Transmissor de Concentração e Densidade

\[\rho = \frac{\rho}{g \cdot h} \]
Especificações e informações estão sujeitas a modificações sem prévia consulta.
Informações atualizadas dos endereços estão disponíveis em nosso site.

web: www.smar.com/brasil2/faleconosco.asp
INTRODUÇÃO

As medições e controle de densidade vem sendo cada vez mais utilizadas na automação de processos industriais. Com a facilidade que se tem no dias de hoje em intervir nos processos, e a necessidade de criar algo prático, simples e barato, surgiu o Transmissor Inteligente de Concentração/Densidade – DT300 (Touché).

O DT é um transmissor de densidade que opera pelo principio mais simples de obtenção de dados, ou seja, trabalha com uma variável considerada a mais medida e controlada nos processos industriais - a pressão. Através da medição de pressões hidrostáticas em dois pontos diferentes e conhecidos, é possível calcular com precisão, além da densidade, a concentração com o auxílio de um sensor de temperatura.

O DT é ideal para a medição estática e dinâmica de fluidos, conforme será descrito neste Guia. Este Guia de Instalação tem o propósito de ilustrar algumas aplicações com detalhes e especificidades de cada caso.

De acordo com principais segmentos industriais mencionados para a utilização do DT, é possível obter experiências que servirão de base para futuras instalações. É válido lembrar que nem todas as possibilidades de uso do DT são abordadas neste Guia, para que certos processos com particularidades não sejam excluídos de usar o DT.

O conteúdo deste Guia é destinado a auxiliar na instalação e montagem do DT300, e está voltado para pessoas relacionadas a área de Assistência Técnica, Vendas, Engenharia, além dos próprios Usuários finais que estarão diretamente operando, instalando e calibrando o equipamento.

Para detalhes mais específicos, consulte o Manual de Instruções do DT300, ou entre em contato com os responsáveis pelo equipamento através dos seguintes telefones/e-mails:

Evaristo Orellana Alves
Email: evaristo@smar.com.br
Tel.: (16) 3946-3592 direto

Carlos Alessandro Marcelino
Email: cmarcelino@smar.com.br
Tel.: (16) 3946-3519 ramal 5523
ÍNDICE

SEÇÃO 1 – INSTALAÇÃO E MONTAGEM ... 1.1

EM TANQUES ... 1.1
 MODELO INDUSTRIAL .. 1.1
 MODELO SANITÁRIO ... 1.3

EM LINHA .. 1.5
 COM TANQUES AMOSTRADORES ... 1.5

SEÇÃO 2 – APLICAÇÕES .. 2.1

AÇÚCAR E ÁLCOOL .. 2.1
 DENSIDADE DO LODO NO DECANTADOR ... 2.1
 DILUIÇÃO DO LEITE DE CAL ... 2.2
 EVAPORAÇÃO .. 2.3
 FERMENTAÇÃO .. 2.5
 DESTILARIA ... 2.6
 REFINARIA DE AÇÚCAR ... 2.7

MINERAÇÃO .. 2.8
 SAÍDA DO MOINHO .. 2.8
 POLPA DE MINÉRIO .. 2.8
 LOOP DE TESTE DO MINERODUTO .. 2.9
 INSTALAÇÃO EM TANQUE ... 2.9
 SAÍDA DO ESPESSADOR .. 2.10
 LEITE DE CAL .. 2.10
 CONCENTRAÇÃO DE ÁCIDOS .. 2.11

INDÚSTRIA QUÍMICA .. 2.11
 DENSIDADE / CONCENTRAÇÃO DE SAIS .. 2.11
 CONCENTRAÇÃO DE SODA .. 2.12
 DENSIDADE DE ÁCIDOS ... 2.12

INDÚSTRIA PETROQUÍMICA .. 2.13
 TANQUE TRATADOR DE ÓLEO .. 2.13
 PRODUTOS DERIVATIVOS DO PETRÓLEO .. 2.14
 DENSIDADE DE ÓLEO CRU ... 2.16
 DENSIDADE DE GPL .. 2.16

INDÚSTRIA DE BEBIDAS .. 2.17
 MEDINDO GRAU PLATO EM CERVEJARIAS ... 2.17
 MEDIÇÃO DE VOLUME DO TANQUE .. 2.17
 MEDINDO GRAU BRIX EM INDÚSTRIAS DE REFRIGERANTES ... 2.17

CELULOSE E PAPEL .. 2.19
 MEDIÇÃO DE CONCENTRAÇÃO DE LICOR NEGRO FRACO E FORTE .. 2.19
 MEDIÇÃO DE DENSIDADE DO LICOR VERDE ... 2.20
 LEITE DE CAL .. 2.20
 CONCENTRAÇÃO DE SODA CÁUSTICA ... 2.21

INDÚSTRIA ALIMENTÍCIA .. 2.21
 CONCENTRAÇÃO DE MISCELA EM ÓLEOS VEGETAIS ... 2.21
 DENSIDADE DE LEITE PRÉ CONDENSADO .. 2.22
 CAFÉ SOLÚVEL ... 2.22
 BRIX DO SUCO DE LARANJA APÓS FILTRAGEM .. 2.23
Seção 1

INSTALAÇÃO E MONTAGEM

Em Tanques

A instalação do DT em tanques é bastante simples, podendo ser instalado lateralmente no tanque ou no topo. E em casos de tanques com agitador utiliza-se uma bainha de proteção para evitar turbulência nos diafragmas.

O DT opera com outros tipos de montagem, tais como montagem em tanque aberto e montagem com um cilindro de extensão. Lembrando que para o DT funcionar corretamente nestes modos de montagem, o nível do fluido a ser medido tem que ser controlado para que cubra ambos os sensores. Também é possível montagem com a haste voltada para cima, e o DT operando no modo reverso.

Modelo Industrial

As montagens típicas do DT em tanque podem ser com conexão flangeada de 4” ANSI B 16.5 RF # (150,300). Veja as figuras a seguir:

![Figura 1.1 - DT’s Operando com Tubo de Extensão e em Tanque Aberto (Nível Constante)](image1)

![Figura 1.2 – DT Instalado em Tanque (Modelo Curvo)](image2)
Para os processos onde há agitação severa, pode ser realizada a construção de um standpipe na lateral do tanque. Veja os detalhes nas Figuras abaixo.

Figura 1.3 - DT's Operando em Tanques (Modo Reverso)

Figura 1.4 – DT em um Standpipe
A montagem em um standpipe, é muito usada para medição de nível de interface, como será mostrado em exemplos posteriores. Veja a figura a seguir:

![Figura 1.5 - Nível de Interface com um Standpipe e Vaso Comunicante](image)

O nível de interface também pode ser medido diretamente em tanques. Veja a Figura 1.6 a seguir.

![Figura 1.6 - Nível de Interface no Tanque](image)

NOTA

A medição de nível de interface deve respeitar uma variação máxima de 500mm, que é a distância de centro-a-centro dos diafragmas sensores.

Modelo Sanitário

A instalação do DT sanitário pode ser feita diretamente no tanque. Para instalações sanitárias, a Smar desenvolveu um adaptador de tanque (*tank adapter*), o qual pode ser instalado em tanques novos ou existentes, evitando a necessidade de utilização de solda, e sem a necessidade de polir novamente o tanque.

A seguir, são mostradas Figuras ilustrativas do adaptador do tanque para instalação do DT sanitário:
1.4

Figura 1.7 - Montagem do Adaptador de Tanque

Figura 1.8 – Exemplo de Montagem do Adaptador de Tanque (Vista do lado Externo do Tanque)

Figura 1.9 – Exemplo de Montagem do Adaptador de Tanque (Vista do lado Interno do Tanque)
Em Linha

Com Tanques Amostradores
Para a medição em linha, o DT deve ser instalado de forma que todo, ou parte do fluido do processo circule sobre ele. Para isso, a Smar desenvolveu tanques amostradores, bastando apenas um by-pass e uma pequena perda de carga na linha principal, de forma que garanta que a amostra circule pelo DT. Existem vasos para fluidos limpos e vasos para fluidos sujos e/ou com sólidos em suspensão. Veja as Figuras a seguir.

Tanques de Fluxo Dividido
Esse padrão de instalação deve ser usado quando há grandes variações de pressão e vazão.

Figura 1.10 – Instalação Típica para Fluidos Limpos (para vazões de até 2 m³/H)

Figura 1.11 – Instalação Típica para Fluidos Sujos e/ou com Sólidos (para vazões de até 8 m³/H)

Tanques de Fluxo Ascendente

Figura 1.12 – Instalação Típica para Fluxo Ascendente (para vazões de até 20 m³/H)

Figura 1.13 – Instalação Típica para Fluxo Ascendente (para vazões de até 80 m³/H)
Figura 1.14 – Instalação Típica para Fluxo Ascendente (para vazões de até 40 m³/H)

Figura 1.15 – Instalação Típica para Fluxo Ascendente (para vazões de até 20 m³/H)

Tanques de Vaso Comunicante

Figura 1.16 – Instalação Típica com Stand Pipe (para nível de interface)
Esquemas Típicos de Instalações

Figura 1.17 – Instalação em By-pass com uma válvula na linha principal para “forçar” a circulação no By-pass

Figura 1.18 – Instalação em By-pass com o Fluído escoando para o Tanque
Figura 1.19 – Instalação em By-pass com uma Bomba

<table>
<thead>
<tr>
<th>NOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A linha principal pode fluir em ambos sentidos.</td>
</tr>
</tbody>
</table>

Figura 1.20 – Recirculação do processo em um Tanque
Figura 1.21 – Instalação em By-pass com tubo de Pitot

Figura 1.22 - Instalação com todo o fluido escoando em um vaso de fluxo ascendente
Seção 2

APLICAÇÕES

Açúcar e Álcool

Esta seção engloba praticamente todas aplicações em açúcar e álcool; desde descrição do processo, à certos "macetes" de instalação que devem ser atentados.

Densidade do Lodo no Decantador

Nesta aplicação, a medição da densidade do lodo é feita em linha, após a bomba de deslocamento contínuo. Observa-se que na construção do vaso de amostragem, aumenta-se o diâmetro da linha de lodo, diminuindo a velocidade do fluido na passagem pelos sensores, justamente devido à presença de areia, bagacilho e outros sólidos em suspensão. A parte inferior do vertedouro, na saída por fluxo ascendente, deverá garantir sempre que o repetidor superior do DT esteja completamente afogado. Recomenda-se a completa limpeza do equipamento por ocasião de paradas do decantador de maneira imediata, evitando que o lodo ressequê sob os sensores.

Considerações

1 - Nesta aplicação, refere-se à medição de densidade, e não brix, pois não se trata de uma solução açucarada na sua totalidade. Desta forma, a unidade de engenharia determinada é a de densidade, por exemplo, Kg/m³.
2 - Cuidado deve ser tomado quando for comparada a medição do instrumento, com análise laboratorial, pois a densidade varia com a temperatura.
3 - Usando a experiência dos operadores encontra-se a densidade ideal para o lodo. Adota-se este valor de densidade como set-point no controlador.
4 - O controlador atuará no inversor de frequência da bomba de lodo para manter a densidade desejada para o lodo.
Diluição do Leite de Cal

Em muitos casos a diluição de cal que é adicionada ao caldo é controlado por análise de laboratório. O DT pode fazer também este controle online.

![Figura 2.2 - DT medindo a concentração (°Baumé) do leite de cal](image)

NOTA
Se houver parada no processo, deve-se drenar o tanque de amostragem e circular água para limpeza dos diafragmas.

![Figura 2.3 - Processo sem incrustação de cal nos diafragmas do DT](image)
Aplicações

Evaporação
O DT pode também ser aplicado para medir a eficiência dos evaporadores, já que é diretamente função do Brix de saída, pelo Brix de entrada.

Medição de Brix do Caldo Pré Evaporado
Para esta aplicação, recomenda-se o uso do "chapéu chinês", para criar o efeito "flash". O efeito "flash" irá auxiliar no desprendimento de bolhas de ar e a eliminação de espuma antes da entrada do vaso amostrador. Veja a instalação com "chapéu chinês".

![Figura 2.4 – Esquema da instalação de caldo pré evaporado](image)

Medição de Brix do Xarope entre Efeitos e no último Efeito de Evaporação
Nesta aplicação, a retirada da amostra deverá ser no recalque da bomba de xarope, retornando a amostra para a caixa de xarope. Também neste caso, o uso do "chapéu chinês" permitirá o desprendimento de bolhas de ar e a eliminação de espuma.

![Figura 2.5 - Esquema da instalação de brix do xarope](image)
Medição de Brix do Mel (pobre, rico e final)

A instalação ideal é o vaso amostrador de fluxo ascendente abaixo do tanque diluidor, e por gravidade, a amostra circula retornando para o tanque de mel diluído. Recomenda-se uma linha de água quente para eventuais limpezas.

Figura 2.6 – Instalação para Medição de Brix do Mel
Fermentação

Medição de Brix do Mosto Fermentado (Dorna)
Observa-se que o modelo curvo está diretamente instalado na dorna de fermentação, e a altura deve considerar que os sensores estejam sempre submersos.

Recomenda-se instalar o DT de tal maneira que o sensor inferior esteja acima do nível máximo de fermento, e instalar uma tomada de amostra próxima ao DT.

Medicação de Brix do Mosto (Diluição)
Para a diluição do mosto (água, mel e caldo), a instalação do DT deverá ser sempre após o conjunto misturador estático. No caso onde há espuma e bolhas de ar, recomenda-se também o “chapéu chinês”. Utiliza-se do vaso amostrador de fluxo ascendente com saída por transbordamento. Para evitar eventuais riscos de infecção, recomenda-se instalar uma linha de água quente para quando houver paradas, para limpeza e correta assepsia do equipamento.
Destilaria

Medição da Graduação do Álcool Hidratado e Anidro
A instalação poderá ser feita tomando-se uma amostra diretamente na saída da coluna de destilação sem a necessidade do uso de trocador de calor para resfriar a amostra.

Figura 2.9 – Instalação na saída da coluna de destilação

Medição de Nível de Interface Ciclo-Hexano
A instalação é feita diretamente em tanque, conforme a Figura abaixo.

Figura 2.10 – Esquema de Instalação do Ciclo-hexano
Refinaria de Açúcar

Diluição de Açúcar
Toma-se uma amostra bombeada do tanque com o açúcar já diluído e retornando ao mesmo tanque, criando assim uma recirculação.

Figura 2.11 - Tanque de fluxo dividido instalado após a bomba de processo
Mineração

Algumas das aplicações no segmento de mineração são: saída do moinho, hidrociclone, diluição de polpa, flotação, espessador, retirada de finos, concentração de ácidos, leite da cal, polpa de minério, classificador gravimétrico, etc.

Saída do Moinho

Nessa aplicação, o minério tem granulometria maior e utiliza-se tanque despressurizado com dreno automático para medir a densidade.

O minério escavado, antes de ser processado, passa pelo moinho e é diluído em água para adição de outros químicos, a fim de ser tratado. A polpa de minério, por ser muito abrasiva, recomenda-se o uso de tanque amostrador de aço carbono, emborrachado internamente para evitar essa abrasão.

Polpa de Minério

A densidade do minério diluído em água pode ser medida em um by-pass com um tanque emborrachado usando um tanque amostrador pressurizado.

O minério, por sedimentar-se facilmente, costuma-se abrir parcialmente a válvula de dreno do tanque amostrador, para evitar entupimento no fundo do tanque.

Figura 2.12 – Saída do Moinho

Figura 2.13 – Exemplo de Instalação em Mineração

<table>
<thead>
<tr>
<th>NOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>É importante manter a válvula de dreno parcialmente aberta.</td>
</tr>
</tbody>
</table>
Loop Teste do Mineroduto

Figura 2.14 – Instalação no Loop de teste do mineroduto

Instalação em Tanque
É possível instalar o DT no tanque usando um standpipe para a medição. Esse tipo de instalação é usada mesmo quando há um agitador no tanque.

Figura 2.15 – Instalação em Tanque com Standpipe
Saída do Espessador
Para medir a densidade na saída do espessador utiliza-se um by-pass após a bomba com um tanque emborrachado amostrador de fluxo ascendente.

![Figura 2.16 – Saída do Espessador](image)

Leite de Cal
Para esta aplicação, um tanque amostrador de fluxo ascendente é utilizado.

![Figura 2.17 – Leite de Cal](image)
Concentração de Ácidos
Algumas mineradoras possuem plantas de ácido. O DT é usado para medir a concentração do ácido nessas plantas. Usualmente a instalação é feita em um by-pass da linha principal.

Indústria Química
Neste segmento industrial o DT é usado para medir concentração de ácidos, sais, sodas, etc. Quando usando o DT nestas aplicações, é possível utilizar um polinômio para disponibilizar a unidade desejada. Por exemplo: % de ácido sulfúrico.

Densidade / Concentração de Sais
O DT é aplicado para controle da concentração da salmoura, antes da eletrólise. O DT é instalado em linha, conforme o esquemático representado pela Figura 2.19 abaixo.

Figura 2.18 – Instalação em Bypass

Figura 2.19 - Recirculação da solução com Bomba
Para fluidos salinos corrosivos, recomenda-se que o tanque amostrador seja em fibra.

É possível que o DT meça concentração em gramas por litro, embora não possua esta unidade em seu software. Para isto, é feito um levantamento em campo de densidade e temperatura (medidos pelo DT) e concentração medido através de análise laboratorial. Com este levantamento, desenvolve-se um polinômio, o qual é possível implementar no DT via configurador.

Concentração de Soda
A soda cáustica é obtida por meio de eletrólise da salmoura tratada (solução de cloreto de sódio e água). Quando é utilizado o processo por células de diafragma, obtêm-se a soda cáustica líquida grau comercial; quando é utilizado o processo por células de mercúrio, obtêm-se a soda cáustica líquida grau Rayon. Ambas apresentam-se sob a forma de uma solução aquosa, límpida, contendo cerca de 50 % de hidróxido de sódio (NaOH) em peso. A % NaOH pode ser medida online usando uma instalação como a representada na Figura abaixo.

![Figura 2.20 – Recirculação com bomba](image)

Densidade de Ácidos
Para medição da densidade ou concentração de ácido, usualmente o material da sonda do DT é Hastelloy e o tanque amostrador é em fibra de vidro.

![Figura 2.21 - Instalação medindo Ácido Clorídrico](image)
Indústria Petroquímica

Tanque Tratador de Óleo

O DT normalmente é instalado em standpipe como mostra a Figura 2.22.

Figura 2.22 - Esquemático da Instalação do DT com Standpipe

Como nesta aplicação há NaCl, utiliza-se a sonda do DT em inox, porém os diafragmas em hastelloy.

Para a configuração do DT, o mesmo é instalado no vaso comunicante e verificado as densidades de ambos compostos. Anota-se os valores de densidade e programa-se a faixa, sendo 0% para o menor valor de densidade, e 100% para o maior valor de densidade. Finalizado este procedimento, configura-se o display para exibir “PV%”.

Exemplo

Para água marinha e óleo: Sobe-se o nível de água marinha no tanque, e mede-se uma densidade de 1,125 g/cm³. Anotado o valor de densidade da água, drena-se o tanque da mesma, de modo que o vaso comunicante fique cheio do óleo, e o valor medido pelo DT é de 0,8 g/cm³. Configure o 4mA = 0,8 g/cm³ e 20mA = 1,125 g/cm³, e o display para exibir PV%.

Figura 2.23 - Medição de nível de Interface (Água salgada/óleo)
Produtos Derivativos do Petróleo

Em controle de qualidade de combustíveis transportados, usa-se o DT para medição em linha da densidade de gasolina, querosene, lubrificante, óleo diesel, GLP e álcool. A captação do fluido para o vaso amostrador é feito através de um tubo de Pitot, dentro da tubulação principal. Veja o esquemático da instalação na Figura 2.24.

A identificação de derivativos de petróleo (gasolina, querosene, óleo diesel, GLP e álcool), transportados em tubulações, é feito através de densidade.

Figura 2.24 - Captação do fluido de processo através do tubo de Pitot

Figura 2.25 – Medicação de densidade para identificação do produto
Outra forma de instalar o DT nesta aplicação, é através de uma bomba para captação do fluído. Esta instalação permite que a vazão na linha seja em ambos os sentidos.

Figura 2.26 – Recirculação com bomba

Figura 2.27 - Recirculação com bomba
Densidade de Óleo Cru
A densidade do óleo cru é medida em estações de medição fiscal, a fim de se obter a vazão mássica.

![Figura 2.28 - Skid de Medição Fiscal](image1.png)

Densidade de GLP
A medição de densidade de GLP pode ser feita diretamente em tanques. Veja Figura 2.29 a seguir.

![Figura 2.29 – Medição de GLP em Tanque](image2.png)
Indústria de Bebidas

Medindo Grau Plato em Cervejarias
As aplicações do DT são em cozimento do mosto, e tanque de fermentação. A instalação do DT é feita diretamente no tanque, com o *tank adapter*. A instalação do DT sanitário é realizado conforme descrito anteriormente.

![Figura 2.30 – Medicação Grau Plato em Tanque de Fermentação](image)

Medicação de Volume do Tanque
O DT também é utilizado na medição da densidade para corrigir o volume no tanque.

Medindo Grau Brix em Indústrias de Refrigerantes

![Figura 2.31 - DT Medindo Brix na produção de Refrigerante](image)
As aplicações para refrigerante são: medindo °Brix da água doce, do xarope e do próprio refrigerante.

O vaso amostrador recebe amostra de uma bomba, que capta o líquido da linha principal, e o retorna em um ponto posterior, na mesma linha.

Figura 2.32 - Esquemático da Instalação

Figura 2.33 - DT medindo °Brix da Água Doce
Celulose e Papel

Medicação de Concentração de Licor Negro Fraco (antes da evaporação) e Forte (após evaporação)

O transmissor de densidade é instalado em linha com o uso de um vaso amostrador, que pode ser de fluxo ascendente ou de entrada dividida. As Figuras 2.34 e 2.35 mostram exemplos de instalações na medição de concentração de licor negro.

Figura 2.34 – Exemplo 1

Figura 2.35 – Exemplo 2

Para aplicações em licor negro ou verde, é preciso tomar certos cuidados com encrustação. Para isto, uma tomada de água quente circulando pelo vaso amostrador é imprescindível, e uma limpeza periódica é necessária.

Figura 2.36 – Medicação Licor negro (fluxo ascendente)

Alguns usuários preferem trabalhar com o °Baumé como unidade de medição, enquanto outros preferem usar Porcentagem de Sólidos.
Medição de Densidade do Licor Verde

Devido ao fato do licor verde ser extremamente incrustante, a instalação neste caso não deve usar tubos de pequenos diâmetros, pois podem entupir facilmente.

A forma de instalação ideal para esta aplicação é usar um vaso amostrador do tipo fluxo ascendente, que por não usar tubos de pequenos diâmetros, não entope e proporciona fácil processo de limpeza para o transmissor de densidade, quando o processo para. Uma tomada de água quente para limpeza periódica também é necessário.

Normalmente o tanque de estocagem de licor verde tem um sistema de recirculação que pode ser usado para instalar o vaso amostrador. As figuras seguintes ilustram este tipo de instalação.

Figura 2.37 – Instalação Licor verde
Figura 2.38 – Detalhe do transbordamento

Outras aplicações são: concentração de soda cáustica, leite de cal e densidade de metanol (que é similar ao processo de destilaria em usinas de açúcar e álcool), etc.

Leite de Cal

Figura 2.39 – Leite de Cal
Concentração de Soda Cáustica

Indústria Alimentícia

Concentração de Miscela em Óleos Vegetais

No processo de extração do óleo de soja forma-se a miscela, que é uma mistura de óleo e hexano. O processo de separação destes dois componentes é denominado de destilação da miscela.

O controle da retirada da miscela é feito através da densidade ou concentração. Para este cálculo, são necessários os dados de densidade e temperatura e um software para o levantamento de um polinômio. Uma vez gerado este polinômio, o próprio DT efetua este cálculo, fornecendo um sinal corespondente à concentração da miscela.

A instalação do DT para miscela, é mostrada na Figura 2.41 a seguir.
Densidade de Leite Pré Condensado
Mede-se a densidade do leite após o evaporador. A instalação é feita conforme a Figura 2.42.

Figura 2.42 - Medindo Densidade do leite pré condensado

Café Solúvel
O DT pode ser empregado no processo de concentração de café solúvel, medindo a eficiência dos evaporadores. A instalação é feita usando um tanque sanitário de fluxo ascendente como mostrado na Figura a seguir.

Figura 2.43 - DT medindo concentração do extrato de café solúvel
Brix do Suco de Laranja após Filtragem
Instalação direta no tanque.

Figura 2.44 – Instalação para medição do °Brix do suco de laranja