

JUN / 04

VERSION 7.1

FOUNDATION P V I E W S W K M E

web: www.smar.com/contactus.asp

www.smar.com

Specifications and information are subject to change without notice.

Up-to-date address information is available on our website.

Index

III

Index
SCRIPTWORX .. 1

Introduction... 1
ScriptWorX Architecture .. 1

ScriptWorX Engine ... 1
ScriptWorX User Interface .. 1
ScriptWorX VBA... 1

ScriptWorX Features... 1
ScriptWorX Engine .. 2
User Interface... 2
Toolbars... 3

Standard Toolbar.. 3
Data-Manipulation Toolbar... 3
Runtime Toolbar ... 4

Menus .. 4
File Menu... 4
Edit Menu .. 5
View Menu... 6
Security Menu .. 7
Tools Menu.. 7
Runtime Menu .. 9
Help Menu...10

Alarm Server Subscriptions ...11
Server ..12
Types ...12
Categories ..13
Areas ...14
Sources ..15
Attributes ..15

Different Types of Scripts ...16
General ..16
Global Scripts ...19
Periodic Scripts ...20
Event Scripts...22
Alarm Scripts ..32
Filter Wizard..32
Selecting Alarm Attributes ..33

Automation in ScriptWorX ...34
Script..34
Script Instance ..34
ScriptWorX Automation..34

ScriptWorX

IV

Writing a Script ..38
Introduction...38
Examples..39

Script Wizard ...45
Running the Script Wizard ..45
Installed Script Categories ...46
Using a Template...48

Script Wizard Creation and Maintenance..48
Header Section..48
Optional and Required Parameters in Scripts...49
Script Template Sample...49
Example..50

ScriptWorX

1

ScriptWorX
Introduction

ScriptWorX is the latest in the suite of automation products offered by Smar. The main function of
ScriptWorX is to manage and maintain scripts that perform different functions. It takes advantage of
multithreading in Visual Basic. The use of multithreading enables operating systems to run more
efficiently because it assigns different tasks to different threads so that the CPU usage will be
divided among these threads. This is very useful if you have a need or desire to run independent
tasks at the same time.

For example, GraphWorX makes it is necessary to enter a sleep function in the code if you want or
need two different tasks to run "at the same time". We say "at the same time" because in actuality
the tasks are not running at the same time; they are running for short periods of time, freezing and
then running again when it is their "turn" to run again. In essence, this is what multithreading
accomplishes, but it is not necessary to enter any additional code.

ScriptWorX Architecture
ScriptWorX is currently supported on Windows 98, 2000, XP, and Windows NT. ScriptWorX is made
up of three different components:

1. The server (ScriptWorX Engine)

2. The ScriptWorX user interface

3. The Visual Basic Editor

ScriptWorX Engine
The Engine is an invisible server that manages threads on which the scripts run. It hosts Visual
Basic for Applications (VBA) Multithreading and is started automatically by its clients. The server will
launch, monitor, and control VBA scripts, and it will host the Periodic32, Event32 and Alarm servers.
This server is written as an ATL Server (.exe) or as an NT service.

ScriptWorX User Interface
The ScriptWorX user interface is where you will configure script trigger conditions. It allows
configuration of Periodic32, Event32, and Alarm servers. During runtime, the user interface allows
you to monitor scripts without running them. On start it automatically launches the ScriptWorX
Engine.

ScriptWorX VBA
As discussed above, the greatest advantage of VBA is the availability of multithreading. ScriptWorX
VBA 6.3 allows for creating, editing, and debugging multithreaded VBA scripts.

Note
Each of these components will be discussed later in greater detail.

ScriptWorX Features
ScriptWorX allows you to create and run custom scripts. These scripts are written in Microsoft
Visual Basic for Applications, and are run as multithreaded objects. The ScriptWorX user interface
indicates what type of script is being created and how it will be executed.

• Global scripts are either manually launched from outside the application or upon entering
runtime mode.

• Periodic scripts are launched according to previously configured time restrictions.

ScriptWorX

2

• Event scripts are based on OPC expression changes.

• Alarm scripts are based on OPC alarms.

Additionally, ScriptWorX also implements the use of thread pool. Traditionally, when a script is run it
starts a thread, which will be deleted by the system when it is done running the script. Each system
is allowed to run a certain number of threads at a time due to the multithreading available in Visual
Basic for Applications 6.3. With multithreading, the threads are not deleted at the end of a script
instance but are instead reused by several miscellaneous scripts. The process of reusing threads
will increase the performance of the scripts since they do not have to go through the process of
creating the thread themselves.

ScriptWorX Engine
The SciptWorX Engine is a server that communicates between the ScriptWorX user interface and
the Visual Basic Editor. It creates scripts based on the configuration in the user interface.

The ScriptWorX Engine is started from ScriptWorX32.exe or from other clients, and is invisible to the
user. It is an ATL application, which hosts the VBA instance and has the ability to run and manage
script instances. Inside ScriptWorX32.exe also sits the Periodic32, Event32, and Alarm servers.
These servers can be programmed (through automation) from the ScriptWorX user interface or from
other sources. When put into runtime mode, they can start scripts based on their internal/external
events. They then call the scripting engine to run the desired script.

User Interface
To start ScriptWorX from the Windows Start menu, select Programs > Smar > ProcessView >
ScriptWorX.

The ScriptWorX user interface, shown below, has an Explorer look and feel to it, which allows for
easy navigation and organization of scripts. In the user interface, you will configure scripts that the
ScriptWorX32.dll will send to the Visual Basic Editor to run. It is able to configure the Periodic,
Event, and Alarm servers (sitting in ScriptWorX) and monitor the running script instances.

Figure 1. ScriptWorX User Interface

ProcessView

3

Toolbars
ScriptWorX has three toolbars with various functions. For more information on these functions,
please refer to the Menus section.

• Standard toolbar

• Data-manipulation Toolbar

• Runtime toolbar

Standard Toolbar
To display the Standard toolbar, shown below, select Standard Buttons from the Toolbars
submenu on the View menu. The Standard toolbar contains the following command buttons.

New: Creates a new document.

Open: Opens an existing document.
Save: Saves the active document.

Cut: Deletes the current selection, sending it to the Clipboard.

Copy: Copies the current selection to the Clipboard.

Paste: Pastes the current contents of the Clipboard.

Up One Level: Moves up one level in the tree view.

Tree Pane: Shows/hides the tree view.

Output Console: Shows/hides the output console.

 About: Displays information about the application.

Data-Manipulation Toolbar
To display the Data-Manipulation toolbar, shown below, select Data Manipulation Buttons from
the Toolbars submenu on the View menu. The Data-Manipulation toolbar contains the following
command buttons.

Insert Trigger: Inserts a new script trigger.

Delete Trigger: Deletes script trigger.
Visual Basic Editor: Opens the Visual Basic Editor.

Make VBA DLL: Makes the VBA MT DLL (global project only).

 Runtime: Enters the display into runtime mode.

ScriptWorX

4

Runtime Toolbar
The Runtime toolbar, shown below, is available only during runtime mode.

Global Scripts: Shows global scripts.

Periodic Scripts: Shows periodic scripts.
Event Scripts: Shows event scripts.

Alarm Scripts: Shows alarm scripts.

Details: Shows/hides the Script Details at the bottom of the screen.

Output Console: Shows/hides the output console.

Visual Basic Editor: Opens the Visual Basic Editor.

Configure: Returns the display to configuration mode.

 About: Displays information about the application.

Menus
The menu bar consists of the following menus:

• File Menu

• Edit Menu

• View Menu

• Security

• Tools Menu

• Runtime Menu

• Help Menu

File Menu
The File menu contains the following commands:

Command Function
New (CTRL+N) Opens a new ScriptWorX display (*.swx) file.

Open (CTRL+O) Opens a dialog box that allows you to select an existing (*.swx) file to
open.

Save (CTRL+S) Saves the open *.swx display file. If this is the first time that the
display is being saved, it will open the Save As dialog box.

Save As
Opens the Save As dialog box, which allows you to enter a file
name for the ScriptWorX file. It also allows you to save the file under
the same name, overwriting a previously saved *.swx file.

Settings (ALT+F7)
Opens the Project Settings dialog box, which allows you to edit the
general VBA settings. For more information, please see the Alarm
Server Subscriptions section.

Run VBA Project
(CTRL+P) Runs the global VBA project in Debug mode.

Make VBA DLL
(CTRL+B)

Allows you to build the .dll file without actually being in VBA. This is
helpful since it is not always desired to build the .dll directly after
entering the code; you may wish to change the configuration of the
script (i.e. what triggers it) after you have written the script.

Exit Exits the application.

ProcessView

5

Project Settings
Selecting Settings from the File menu opens the Project Settings dialog box, which allows you to
edit the default VBA project settings. You can choose to synchronize the VBA project name, file
name, and directory with the configuration *swx file (recommended). Alternatively, you can use a
standalone project and specify a Project Name and Designer Name.

Note
When a standalone project is used, the ScriptWorX Configurator will not maintain it.

You can also define global alarm server subscriptions, which are shared by all alarm triggers. For
more information, please see the Alarm Server Subscriptions section.

Figure 2. Project Settings Dialog Box

Edit Menu
The Edit menu contains the following commands:

Command Function

Insert New Trigger
(CTRL+T)

Opens the Insert Script dialog box, shown below, which allows you to
insert a new Global, Periodic, Event, or Alarm script. For more
information, refer to the Different Types of Scripts section.

Delete Trigger Deletes the selected script trigger.

Figure 3. Insert Script Dialog Box

ScriptWorX

6

View Menu
The View menu contains the following commands:

Command Function

Toolbars Hides/shows the Data-Manipulation toolbar and the Standard toolbar.

Status Bar Hides/shows the status bar.

Tree Pane Displays the tree view in the left-hand pane, which allows for easy
navigation through the different scripts and script types.

Output Console Displays the output console (bottom pane) in the user interface.

Clear Output
Console Clears all output console events.

Output Console
Widow Font

Opens the Font dialog box, which allows you to choose the text attributes
for the output console.

Focus Tree View
(ALT+1) Places the cursor in the tree view (left-hand pane) of the interface.

Focus Right View
(ALT+2) Places the cursor in the right-hand pane of the interface.

Focus Console View
(ALT+3) Places the cursor in the output console.

Up One Level
(CTRL+U) Moves the cursor up one level.

Select Language
(CTRL+ALT+U) Opens the Select Language dialog box, shown below.

Select Language
The Select Language function on the View menu allows you to choose which language you want
to use in your display. Choosing Select Language from the View menu opens the Select
Language dialog box, shown below.

Figure 4. Select Language Dialog Box

Define the parameters listed in the table below. Then click OK to return to the work area.

ProcessView

7

Select Language Parameters

Parameter Description

List

Lists available languages. Depending on which item you have
selected, the view on the left will change. If English is checked,
the languages will appear as their English name. If Localized is
checked, the languages will appear with the native country in
parentheses (for languages with several dialects only). When
Native is checked, the languages are displayed the way they
would be written in that language.

Installed Locales Only If this is checked, local languages appear in the box.

Available Language
Translations Only

Checking this box allows you to choose from available language
translations only.

Security Menu
Selecting Login from the Security menu opens the Smar Security Login Utility. For more
information, please refer to the Smar Security documentation.

Tools Menu
The Tools menu contains the following commands:

Command Function

Macros Launches either the Visual Basic Editor.

Security
Configuration

Launches the Smar Security Configurator. For more information,
please refer to the Smar Security documentation.

Options Opens the ScriptWorX Options dialog box, which allows you to
select general and event options. For more information, see below.

Set Working
Directory

Opens the Set Working Directory dialog box, shown below, which
allows you to select the directory where all files associated with the
current scripts will reside. This is the directory to which the VBA files
and dll files should be saved. Click Browse to select a directory.

Figure 5. Set Working Directory Dialog Box

Options
Selecting Options from the Tools menu opens the ScriptWorX Options dialog box, which contains
two tabs: General and Events.

General Tab

The General tab, shown below, allows you general application settings. In the Startup Settings
field, you can choose to start with a new project, to start with the most recently used file, or to start
with a selected file. You can also choose the Editor settings. In the Runtime Engine section, you
can specify the number of threads for the ScriptWorX engine.

ScriptWorX

8

The Default OPC Scan Rate (in milliseconds) is used as “default” OPC scan rate for tags, which
does not override it using point extension syntax. The Point Extension Syntax (PES) allows for
retrieving additional information related to OPC tags, such as quality and timestamp. The following
are example expressions using a valid PES request:

• tag:Smar.Simulator\SimulatePLC.Ramp#timestamp

• tag:Smar.Simulator\SimulatePLC.Ramp#quality

• tag:\\pc1\Smar.Simulator\SimulatePLC.Ramp#timestamp

• tag:\\pc1\Smar.Simulator\SimulatePLC.Ramp#quality

Sometimes it may be necessary to enforce the “request data type” to a specific type, such as
“string,” in order to display this information in a process point.

Figure 6. ScriptWorX Options Dialog Box: General Tab
Events Tab

The Events tab, shown below, allows you to select when you want to have events logged. You can
choose all, some, or none of the options. Each option pertains to an event occurring within
ScriptWorX.

ProcessView

9

Figure 7. ScriptWorX Options Dialog Box: Events Tab

Runtime Menu
The Runtime menu toggles the display between runtime mode and configuration mode. When the
display enters runtime mode, this menu will change to Configure, which returns the display to
configuration mode. In addition to the Runtime toolbar, the following menus are also available
during runtime mode.

• File

• Instances

• View

• Security

• Tools

• Help

File Menu

Command Function

Exit Quits the application and prompts to save documents.

Instances Menu

Command Function

Start Starts an instance of the selected script.

Suspend Suspends an instance of the selected script.

Resume Resumes an instance of the selected script.

Terminate Terminates an instance of the selected script.

ScriptWorX

10

View Menu

Command Function

Toolbar Hides/shows the Runtime toolbar.

Status Bar Hides/shows the status bar.

Details Pane Hides/shows the Script Details at the bottom of the screen.

Output Console Displays the output console (bottom pane) in the user interface.

Output Console
Widow Font

Opens the Font dialog box, which allows you to choose the text
attributes for the output console.

Show Global Scripts Shows the global scripts in the top pane of the screen.

Show Alarm Scripts Shows the alarm scripts in the top pane of the screen.

Show Event Scripts Shows the event scripts in the top pane of the screen.

Show Periodic
Scripts

Shows the periodic scripts in the top pane of the screen.

Focus Right View
(ALT+2)

Places the cursor in the right-hand pane of the interface.

Focus Console View
(ALT+3)

Places the cursor in the output console.

Select Language
(CTRL+ALT+U)

Opens the Select Language dialog box.

Security Menu
Selecting Login from the Security menu opens the Smar Security Login Utility. For more
information, please refer to the Smar Security documentation.

Help Menu
The Help menu contains the following commands:

Command Function

Help Topics Opens the help documentation associated with this program.

About
Application

Opens the About Box, which provides the version number and copyright
information for this software.

ProcessView

11

Alarm Server Subscriptions
The Alarm Server Subscription section in the Project Settings dialog box, shown below,
determines what type of OPC connection will be made with the Current Events Viewer.

Figure 8. Project Settings Dialog Box

Clicking Show Subscription Editor opens the Subscription Properties dialog box, shown below,
which allows you to add, edit, delete, and rename subscriptions. To add a new subscription, click
Add. A subscription called "New Subscription" will appear as shown below.

Figure 9. Subscription Properties Dialog Box

ScriptWorX

12

This subscription does not contain any data, so it is necessary to immediately edit the new
subscription. To do so, click Edit to open the Event Subscription dialog box, which contains the
following tabs.

• Server

• Types

• Categories

• Areas

• Source

• Attributes

Note
It is possible for a script to have more than one subscription. In fact, it is a very effective way to
achieve filtering.

Server
The Server tab, shown below, allows you to select a Node and an Event Server for each
subscription. To select the event server, click the Browse. This opens the OPC Universal Tag
Browser, which allows you to choose from a list of available Alarm OPC servers. Select the desired
server, and then click OK. For local servers, it is not necessary to fill in the Node field.

Figure 10. Alarm Subscription: Server Tab

Types
The Types tab, shown below, allows you to configure which OPC-defined event types each
subscription should have, and it enables you to set the ranges for severity (priority). The value "0" is
the low severity value, and "1000" is the high severity value. Please note that OPC Alarm and
Events (AE) servers are required to scale severity values to the OPC ranges (i.e. an alarm and
event server that contains two severity ranges will convert these to 0 and 1000).

ProcessView

13

Figure 11. Alarm Subscription: Types Tab

Event Types
Simple: These messages state information, but they do not have alarm status and do not contain
information on what initiated the message. This includes the following information: Source, Time,
Type, EventCategory, Severity, Message, Cookie, and Server-specific items.

Example: "FIC101, 12:0:0 1/1/99, Simple, Category1, 100, 'Shift Change', 1"

Simple messages would be similar to an event.

Tracking: These messages contain additional information about the client that initiated the event,
including the following information: Source, Time, Type, EventCategory, Severity, Message, Cookie,
ActorID, and Server-specific items.

Example: "FIC101, 12:0:1 1/1/99, Tracking, Category1, 300, 'Pump pressure Set to 10 psi', 1,
Station 12"

Tracking messages are similar to event messages in that the cause of the event is important. An
example would be an operator changing a setpoint value. This type of message does not include
acknowledge capability.

Condition: These messages contain all of the above information but also include an
acknowledgement portion. This includes the following information: Source, Time, Type,
EventCategory, Severity, Message, Cookie, ConditionName, SubConditionName, ChangeMask,
NewState, ConditionQuality, AckRequired, ActiveTime, ActorID, and Server-specific items.

Example: "FIC101, 12:0:3 1/1/99, Condition, Category1, 700, 'Pump pressure to high', 1, Limit, HiHi,
1,Active Enabled, Good, TRUE, 12:0:2 1/1/99"

Condition messages are considered "typical" alarm messages with acknowledge capability.

For exact details on any of the included information, please see the OPC Alarm and Events
specification.

Categories
The Categories tab, shown below, allows you to select the categories for a subscription. Select the
category from the list of available categories and click the Add -> button. The category will appear
in the Subscribed list. To remove a category from this list, select the category in the Subscribed
list and then click the <- Remove button. If no categories are listed in the Subscribed list, then all
categories are selected by default.

ScriptWorX

14

Figure 12. Alarm Subscription: Categories Tab

Areas
To select an area or group of areas for filtering in a subscription, click Browse in the Areas tab,
shown below. The OPC Event Server Area/ Source Browser will appear listing all available Areas
for your Event Server. Area subscription supports wildcards. Wildcards subscribe to the format of
Visual Basic's "like" command. For example, Area1* will subscribe to all alarm areas that contain
strings beginning with Area1. Area1* will subscribe to the root area and its child areas. A detailed
explanation of the wildcard support can be found in the OPC Alarm and Events documentation. It is
a good idea to thoroughly read the wildcard documentation before attempting to use complicated
expressions. It is also possible to delete an area from this same window.

To delete an area, select it from the list of areas for this particular subscription and click the Delete
button. Not all OPC AE servers support area filtering as part of the subscription.

Note
If no areas are listed, then all areas are selected by default.

Figure 13. Alarm Subscription: Areas Tab

ProcessView

15

Sources
The Sources tab, shown below, allows you to filter on a source or group of sources for a particular
subscription. To select a source, click Browse and select one from the OPC Event Server Area/
Source Browser. The source subscription provides the wildcard support found in the area
subscription.

It is also possible to delete a source for a particular subscription. To delete a source, select it from
the list of sources for this particular subscription and click Delete. Not all OPC AE servers support
source filtering as part of the subscription.

Note
If no areas are listed, then all areas are selected by default.

Figure 14. Alarm Subscription: Sources Tab

Attributes
The Attributes tab, shown below, allows you to add extra attributes to a particular event category
within a subscription. Select the event category from the corresponding drop-down menu. Choose
the desired items from the available attributes list, and then click Add button.

To remove an attribute from the subscribed list, select that particular attribute and then click
Remove. It is important to note that the order of the subscribed attributes does matter, because the
first attribute listed will have priority over all other attributes in the list. The order of the attributes
also determines the order in which they will be selected from the server. To change the order of the
attributes in the subscribed field, simply select an attribute and click the "up" and "down" arrow
buttons. Server-specific information will be displayed in the Attributes1-n columns. The attributes
columns are added in the column property page.

Note
To receive extra attributes you must request them per event category.

ScriptWorX

16

Figure 15. Alarm Subscription: Attributes Tab

Different Types of Scripts
There are four basic types of scripts that can be inserted into the user interface: global, periodic,
event, and alarm. Which type you choose will depend on how you want the scripts to be triggered.

General

Inserting a Script
To add a new script, select Insert New Trigger from the Edit menu. The type of script inserted
depends on which type is selected in the tree view of the user interface. You can also right-click the
script type in the tree view and select Insert Trigger, as shown below. Alternatively, you can also
click the Insert Script button on the Data-Manipulation toolbar.

Figure 16. Inserting a Trigger

If no type is selected, the Insert Script dialog box will open as shown below, allowing you to choose
a script type.

Figure 17. Insert Script Dialog Box

ProcessView

17

Regardless of the type of script, the following information will appear on the top of the script
configuration window in the right-hand pane of the ScriptWorX screen.

Figure 18. General Information for All Scripts

The Trigger Name is automatically created, and it depends on the type of script that is being
created. The created names consist of the type of script (global, periodic, event, or alarm) followed
by an incremental number starting with 0. You can change the Script Name if you like by simply
type the new name in the appropriate field and then clicking the Apply.

Note
If you change the configuration of a script, you must click Apply to have these changes actually
applied. If you try to change to another configuration after making changes, you will be prompted to
save the changes.

You can also enter a description of what the script will actually do when it is running. The ProgID
field allows you to enter the project and designer names with which this script is associated. Clicking
the button to the right of this field opens the VBA Project Settings dialog box, shown below. You
can use the default project settings, or you can specify the project and designer names for the script
by using a standalone VBA project.

Figure 19. VBA Project Settings Dialog Box

Date/Time Range
The Date/Time Range section of the trigger properties, shown below, allows you to set when you
want the script to start and stop running.

ScriptWorX

18

Figure 20. Date/Time Range for Scripts

Other General Features
The last set of general features common to all types of scripts are the four buttons, shown below,
that can be found at the bottom of the trigger section for each script.

Figure 21. User Interface Action Buttons

The Apply and Reset buttons deal with changes that you have made to the configuration of the
scripts. To save the changes you have made to the script, click Apply. Clicking the Reset button
will restore the script to the last saved configuration.

The other buttons refer to Visual Basic for Applications, and provide simple methods of accessing
the actions and applications needed for writing the code behind each script. The Edit VBA Code
button launches the VBA Editor, which allows you to enter new or additional code for the current
script. The VBA Script Wizard launches the Smar Visual Basic for Applications Script Wizard,
which contains many script templates for the most common operations. This feature will be
discussed later in greater detail.

Common Runtime Features
To enter runtime mode, save the current configuration to a file and then select Runtime from the
menu bar. The following screen will be displayed. All scripts are displayed in the top pane of the
screen.

ProcessView

19

Figure 22. Runtime Mode Screen

When you select a script, the script details are displayed in the bottom pane of the screen. All fields
in the script details will automatically be filled in according to the configuration elements settings. If
you would like to start another instance of the script, simply click the Start Instance button. This
button is the same button you would use to trigger the script manually.

The list box shown above will post all scripts that have been configured as well as their status.
Using the command buttons on the left of the Script Details section, you can Start, Suspend,
Resume, or Terminate an instance of a script. These buttons are helpful if a script is running
improperly, or if you have a script running on a certain interval and you need to change it or run it
again.

Global Scripts
The use of global scripts indicates that you want to run the script either at the first instance of
entering runtime or by triggering it manually. Once the global script is inserted into the user
interface, the configuration screen will appear in the right-hand pane. The General and Date/Time
Range sections have already been discussed in the previous section. The other configuration
section is Trigger, shown below.

Figure 23. Trigger Configuration for Global Script

The Trigger section determines how you want global scripts to be triggered. If the On Entering
Runtime option is selected, the script will start when the display enters runtime mode. If you do not
want this to happen, you can select the Manually... option, which allows you to run the script
manually in runtime mode by clicking the Start Instance button in the Runtime Monitor.

ScriptWorX

20

Periodic Scripts
Periodic scripts are set to trigger after some time restriction or task reoccurrence. There are a few
more ways to configure periodic scripts than with global scripting. You should first select how you
want to trigger the script: once, daily, monthly, yearly, or at some interval. After that, you should set
the corresponding trigger conditions.

Once
When Once is selected for a script, as shown below, the script is launched once at the specified
start time and runs until it is completed. To get this script triggered again, it must be done manually.
This is convenient if you want to print out a long report but want to do it after everyone has left so as
to not clog the printer. Simply write a script and set it to start at a time when you know it will not be
inconveniencing anyone. It is also helpful if you want to test a script to make sure that it is working
properly.

Figure 24. Periodic Scripting Configuration - Once

Daily
As shown below, setting a script to Daily gives you two options: Every x day(s) or Every
weekday. If you select the first option, then you must enter the number of days between each
trigger. For example, if you wanted to trigger an event to occur every other day, you would enter '2'
for the number of days. If you select Every weekday, the script will run every Monday, Tuesday,
Wednesday, Thursday, and Friday.

Figure 25. Periodic Scripting Configuration - Daily

In addition to these two options, the trigger for the script can be further configured by selecting not
only a start time but an end option as well in the Date/Time Range section. There are three
different end options, which are listed in the table below.

ProcessView

21

End Option Result

No end date / time Once triggered, the script will not end.

End after n occurrences After the triggered script has run for n times, it
will stop.

End by (selected date and
time)

The triggered script will stop at the selected date
and time.

You are also required to enter a start date/time to indicate when you want the script to start.

Weekly
The Weekly trigger options, shown below, are relatively straightforward. Simply select the day(s)
on which you want the script to run. It is possible to select more than one day. As stated in the
previous section, you can further configure the trigger for the script by selecting a start date/time
and one of the three available end options in the Date/Time Range section.

Figure 26. Periodic Scripting Configuration - Weekly

Monthly
There are two options to consider when setting a Monthly trigger for a script, as shown below. The
first option allows you to select the day of the month on which you want to set the trigger. The
second option allows you to determine how frequently the script will be triggered (i.e. every month,
every two months, etc.). If the second option is chosen, you must enter the [first, second, third,
fourth or last], [day, weekday, weekend day, Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday or Saturday] of every [x] month(s).

Using the monthly trigger can be useful for scheduling events that need to occur every month or
every quarter. These monthly triggers can also be affected by the start and end settings defined in
the Date/Time Range section.

Figure 27. Periodic Scripting Configuration - Monthly

ScriptWorX

22

Yearly
When setting a script to trigger Yearly, as shown below, you have two options: The first option is
every [month] on the [day]. The second option is the [first, second, third, fourth, or last], [day,
weekday, weekend day, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, or Saturday] of
[month]. This is very helpful if you need to run a year-end report, or you need to perform a task once
a year and you want to schedule it in advance.

Figure 28. Periodic Scripting Configuration - Yearly

Interval
The final trigger option for periodic scripts is the Interval option, shown below. When this option is
selected, the script can be triggered to run after a set period of time. This is a useful option if you
want to update data once in a while. Simply set the interval in the trigger area [Day(s)] [Hour(s)]
[Minute(s)], and [Second(s)].

Figure 29. Periodic Scripting Configuration - Interval

Event Scripts
Event scripts are scripts that are triggered after an event has occurred. The configuration screen,
shown below, contains the following three options:

• First time condition becomes TRUE

• Always when expression becomes TRUE

• Continuously when expression is TRUE

ProcessView

23

Figure 30. Events Script Configuration Screen

The condition/expression to which each of these options refers is set either by using the
Expression Editor or by manually entering text in the blank expression box. Clicking the
Expression Editor button opens the Edit Expression dialog box, shown below.

Figure 31. Edit Expression Dialog Box

Point Extension Syntax
The Point Extension Syntax (PES) allows for retrieving additional information related to OPC
tags, such as quality and timestamp. The following are example expressions using a valid PES
request:

• tag:Smar.Simulator\SimulatePLC.Ramp#timestamp
• tag:Smar.Simulator\SimulatePLC.Ramp#quality
• tag:\\pc1\Smar.Simulator\SimulatePLC.Ramp#timestamp
• tag:\\pc1\Smar.Simulator\SimulatePLC.Ramp#quality

Sometimes it may be necessary to enforce the “request data type” to a specific type, such as
“string,” in order to display this information in a process point.

This dialog box contains the following options:
• Arithmetic
• Relational
• Logical
• Bitwise
• Functions
• Tags

ScriptWorX

24

Arithmetic
Clicking Arithmetic in the Edit Expression dialog box allows you to perform the following
mathematical functions:

The symbols '+', '-', '*', '/' and '%' use the following format:

expression :: parameter symbol parameter

Where

Parameter A local variable, an OPC tag, a constant, or another expression

Symbol + or - or * or / or %

Result

The expression results in a number of any type (float, long, etc.).

Examples

Symbol Description Example Result
+ Addition ~~var1~~ + ~~var2~~ 8+3 = 11

- Subtraction ~~var1~~ - ~~var2~~ 8-3 = 5

* Multiplication ~~var1~~ * ~~var2~~ 8*3 = 24

/ Division ~~var1~~ / ~~var2~~ 8/3 = 2.66667

% Calculates the
remainder after division

~~var1~~ % ~~var2~~ 8%3 = 2

(and) Gives precedence to
parts of the calculation

~~var1~~ / (~~var2~~ +
~~var3~~)

8/(3+2) = 1.6

Relational
Clicking Relational in the Edit Expression dialog box allows you to edit expressions using the
following:

The symbols '<', '>', '<=', '>=', '==' and '!=' use the following format:

 expression :: parameter symbol parameter

Where

Parameter A local variable, an OPC tag, a constant, or another expression

Symbol < or > or <= or >= or == or !=

Result

The expression results in a Boolean value (0 or 1).

Examples

Symbol Description Example Result
< Less than ~~var1~~ < ~~var2~~ 8<3 = 0

ProcessView

25

Symbol Description Example Result
> Greater than ~~var1~~ > ~~var2~~ 8>3 = 1

<= Less than or equal to ~~var1~~ <= ~~var2~~ 8<=3 = 0

>= Greater than or equal to ~~var1~~ >= ~~var2~~ 8>=3 = 1

== Equal to ~~var1~~ == ~~var2~~ 8==3 = 0

!= Not equal to ~~var1~~ != ~~var2~~ 8!=3 = 1

Logical
Clicking Logical in the Edit Expression dialog box allows you to edit expressions using the
following:

The symbols '&&' and '|| ' use the following format:

 expression :: parameter symbol parameter

The symbol '!' uses the following format:

 expression :: symbol parameter

Where

Parameter A local variable, an OPC tag, a constant, or another expression

Symbol && or || or !

Result

The expression results in a Boolean value (0 or 1).

Truth table

Examples

Symbol Description Example Result
&& And ~~var1~~ && ~~var2~~ 8 && 3 = 1

|| Or ~~var1~~ || ~~var2~~ 8 || 3 = 1

! Not !~~var1~~ !8 = 0

Bitwise
Clicking Bitwise in the Edit Expression dialog box allows you to edit expressions using the
following:

The symbols '&', '| ', and ' '̂ of the bitwise group use the following format:

 expression :: parameter symbol parameter

ScriptWorX

26

The symbol '~' of the logical group uses the following format:

 expression :: symbol parameter

The symbols 'shl' and 'shr' of the bitwise group use the following format:

 expression :: symbol (value, shift by)

Where

Parameter A local variable, an OPC tag, a constant, or another expression

Symbol && or || or ̂or shl or shr or ~

Result

The expression results in a number when the parameters used contain numbers.

Bit Table

 Binary (Decimal) Binary (Decimal)

~~var1~~ 0000.0000.0000.1000(8) 0000.0000.0110.0000(96)

~~var2~~ 0000.0000.0000.1010(10) 0000.0000.0000.1000(8)

~~var1~~ & ~~var2~~ 0000.0000.0000.1000(8) 0000.0000.0000.0000(0)

~~var1~~ | ~~var2~~ 0000.0000.0000.1010(10) 0000.0000.0110.1000(104)

~~var1~~ ^ ~~var2~~ 0000.0000.0000.0010(2) 0000.0000.0110.1000(104)

shl (~~var1~~,3) 0000.0000.0100.0000(64) 0000.0011.0000.0000(768)

shr (~~var1~~,3) 0000.0000.0000.0001(1) 0000.0000.0000.1100(12)

~(~~var1~~) 1111.1111.1111.0111(-9) 1111.1100.1111.1111(-97)

bittest(~~var1~~,3) 0000.0000.0000.0001(1) 0000.0000.0000.0000(0)

Examples

Symbol Description Example Result
& Bit And ~~var1~~ & ~~var2~~ 8 && 3 = 0

| Bit Or ~~var1~~ | ~~var2~~ 8 || 3 = 11

^ Bit eXclusive Or ~~var1~~ ^ ~~var2~~ 8^3=11

shl Bit shift left shl(~~var1~~,3) 8<<3=64

shr Bit shift right shr(~~var1~~,3) 8>>3=1

~ Not (two's
complement)

~(~~var1~~) !8 = -9

bittest Bit Test bittest (5 , 0) 1

Note
The bittest function requires you to specify the position of the bit to be tested. You must indicate
that it starts from 0. In other words, a bit position of "0" indicates the "less significant" bit.

ProcessView

27

Functions
Clicking Functions in the Edit Expression dialog box allows you to edit expressions using the
following:

The symbols 'sin', 'asin', 'cos', 'acos', 'tan', 'atan', 'log', 'ln', 'exp', 'sqrt', 'abs', 'ceil', and 'floor' use the
following format:

 expression :: symbol (parameter)

The symbols 'pow', 'min', and 'max' use the following format:

 expression :: symbol (parameter,parameter)

The symbol 'if' uses the following format:

 expression :: symbol (parameter,parameter,parameter)

Where

Parameter A local variable, an OPC tag, a constant, or another expression

Symbol sin, asin, cos, acos, tan, atan, log, ln, exp, sqrt, abs, ceil, floor, min,
max, pow, or if

Result

The expression results in a number.

Examples

Symbol Description Example Result
sin sine of an angle in

radians
sin(~~var1~~) sin(0.785)=0.71

cos cosine of an angle
in radians

cos(~~var1~~) cos(0.785)=0.71

tan tangent of an
angle in radians

tan(~~var1~~) tan(0.785)=1.0

asin arc sine returns
an angle in
radians

asin(~~var1~~) asin(0.5)=0.52

acos arc cosine returns
an angle in
radians

acos(~~var1~~) acos(0.5)=1.05

atan arc tangent
returns an angle
in radians

atan(~~var1~~) atan(1)=0.785

sqrt Returns the
square root

sqrt(~~var1~~) sqrt(100)=10

pow Returns value 1
raised to the
power value 2

pow(~~var1~~,~~var2~~) pow(100,1.5)=1000

log 10 based log(~~var1~~) log(100)=2

ScriptWorX

28

Symbol Description Example Result
logarithm

ln e based logarithm ln(~~var1~~) ln(7.389)=2

exp Exponential exp(~~var1~~) exp(2)=7.389

abs Absolute value abs(~~var1~~) abs(-1)=1

ceil Integer ceiling ceil(~~var1~~) ceil(7.39)=8

floor Integer floor floor(~~var1~~) floor(7.39)=7

min Lowest value of
two

min(~~var1~~,~~var2~~) min(10,5)=5

max Highest value of
two

max(~~var1~~,~~var2~~) min(10,5)=10

if Conditional
statement

if(~~var1~~<~~var2~~,
~~var1~~,~~var2~~)

if(5<8,5,8)=5

like Wildcard string
compare

Like(string, pattern,
casesensitive')

quality Quality of tag or
expression

See below. See below.

tostring Type conversion See below. See below.

0x Hexadecimal
constant

x=0x11 17

0t Octal constant x=0t11 9

0b Binary constant x=0b11 3

Note
For the like operator: "string" equals the string to search in; "pattern" equals the string to search for
(can include wildcards); nonzero for case-sensitive search; zero for case-insensitive search. String
syntax is $"string"$.

You can use these special characters in pattern matches in string:

• ? Any single character.

• Zero or more characters.

• # Any single digit (0-9).

• [charlist] Any single character in charlist.

• [!charlist] Any single character not in charlist.

Quality

The quality option on the Functions menu of the Expression Editor is used to evaluate the
quality of an OPC tag or an expression.

The following general syntax is used for quality expressions:

x=quality(expression)

Note
The "(expression)" can also be a simple expression composed of a single tag.

ProcessView

29

The quality function returns the OPC quality of the string between parentheses as one of the
following results:

• 192: quality is GOOD

• 64: quality UNCERTAIN

• 0: quality BAD

Note: The OPC Foundation establishes the value ranges for quality. There are actually varying
degrees of quality:

• GOOD: 192-252

• UNCERTAIN: 64-191

• BAD: 0-63
For more information, refer to the OPC Data Access Custom Interface Standard available for
download at the OPC Foundation's Web site, www.opcfoundation.org/.

Example Quality Expression

Expression Result

x=quality({{Smar.Simulator.1\SimulatePLC.PumpStatus}}) 192 (Quality GOOD)

The quality of an expression is determined through the evaluation of each single tag in the
expression. Thus, if you have multiple tags in an expression (and each tag has a different quality),
the result of the expression (i.e. 192 [GOOD], 64 [BAD], or 0 [UNCERTAIN]) corresponds to the
quality of the tag with the lowest quality. If an expression contains a conditional statement (e.g. if,
then, or else), then the result of the expression is affected only by the quality of the branch being
executed.

Consider the following sample expression:

 x= if (quality({{Tag1}}) == 192, {{Tag1}}, {{Tag2}})

This expression can be read as follows:

"If the quality of Tag1 is GOOD (i.e. 192), then the expression result (x) is the value of Tag1. In all
other cases (i.e. the quality of Tag1 is UNCERTAIN or BAD), the expression result (x) is the value of
Tag2."

We can calculate the results for this expression using different qualities for Tag1 and Tag2, as
shown in the figure below.

Case Tag1 quality Tag2 quality Result Result quality

1 GOOD GOOD Tag1 192 (GOOD)

2 GOOD UNCERTAIN Tag1 192 (GOOD)

3 GOOD BAD Tag1 192 (GOOD)

4 UNCERTAIN GOOD Tag2 192 (GOOD)

5 UNCERTAIN UNCERTAIN Tag2 64 (UNCERTAIN)

6 UNCERTAIN BAD Tag2 0 (BAD)

7 BAD GOOD Tag2 192 (GOOD)

8 BAD UNCERTAIN Tag2 64 (UNCERTAIN)

9 BAD BAD Tag2 0 (BAD)

ScriptWorX

30

In cases 1-3 above, the quality of Tag1 is GOOD, and therefore the result of the expression is
GOOD. Thus, the result of the expression is not affected by the quality of Tag2 (the “else” branch of
the expression), which is ignored.

In cases 4-6, the quality of Tag1 is UNCERTAIN, and therefore the result of the expression is the
quality of Tag2.

In cases 7-9, the quality of Tag1 is BAD, and therefore the result of the expression is the quality of
Tag2.

Note
The “quality()” function returns a value that represents the quality of the expression within the
parentheses but is always GOOD_QUALITY. For example, if Tag1 is BAD_QUALITY then the
expression “x=quality({{Tag1}})" will return 0 with GOOD_QUALITY.

The result of an expression is the minimum quality of the evaluated tag in the expression and is
affected only by the quality of the conditional (if, then, or else) branch that is executed.

Consider the following sample expression:

x= if ({{TAG_01}}>0,{{TAG_02}},{{TAG_03}})

This expression can be read as follows:

"If the value of TAG_01 is greater than 0, then the expression result (x) is TAG_02. If the value of
TAG_01 is less than or equal to 0, then the expression result (x) is TAG_03."

Let's assume that the following values and qualities for these tags:

TAG_01=5 with quality GOOD

TAG_02=6 with quality UNCERTAIN

TAG_03=7 with quality BAD

Because the value of TAG_01 is 5 (greater than 0), the expression result is TAG_02. Thus, the final
expression result is 6, and the final expression quality is UNCERTAIN.

Type Conversion

The tostring option on the Functions menu of the Expression Editor takes the value of whatever
item is in parentheses and converts it into a string as follows:

The value is +(value)+unit

It can be used to convert from number to string, and it can be very useful for string concatenation.

The proper syntax for the tostring option is:

x=$"The value is "$ + tostring(value) + $" unit"$

Note
In the expression above, the word "unit" is placeholder text for a user-specified unit of measurement
or variable (e.g. Watt, inches, meters, etc.).

Example Expressions Type Conversion

Expression Result

x=$"The value is "$ + tostring({{gfwsim.ramp.float}}) + $" Watt"$ “The value is 543.2345152
Watt”

Constants

The Functions menu of the Expression Editor supports constant values, including hexadecimal,
octal, and binary formats.

ProcessView

31

Example Expressions Using Constants

Expression Result

x=0x11 17

x=0t11 9

x=0b11 3

The Expression Editor conveniently inserts the 0x and 0t and 0b prefixes for you so do not have to
recall them.

Interpreting and Translating Constants

The examples below show how values are calculated for each type of constant.

• Hexadecimal: 0x20A = 2 * (16^2) + 0 * (16^1) + 10 * (16^0) = 2*256 + 0*16 + 10 * 1 = 512 + 0
+ 10 = 522

• Octal: 0t36= 3 * (7^1) + 6 *(7^0) = 3* 7 + 6* 1= 21 + 6 = 27

• Binary: 0b110 = 1 * (2^2) + 1 * (2^1) + 0 * (2 ̂0) = 1 * 4 + 1 * 2 + 0 * 1 = 4+2+0 = 6

Tags
Clicking the Tags button in the Edit Expression dialog box opens the OPC Universal Tag
Browser, shown below. You can use the tree view on the left to browse for different OPC servers
and to find the tag that you want to include as your condition to trigger the event script.

Figure 32. OPC Universal Tag Browser

ScriptWorX

32

Alarm Scripts
Alarm scripts are scripts that are triggered after an alarm has occurred. Alarm scripts are set up
identically to event scripts. The configuration screen, shown below, contains the following three
options:

• First time condition becomes TRUE

• Always when expression becomes TRUE

• Continuously when expression is TRUE

Figure 33. Alarm Script Configuration Screen

The condition/expression to which each of these options refers is set either by using the
Expression Editor or by manually entering text in the blank expression box. Clicking the Filter
Expression Editor button opens the Edit Expression dialog box, which contains the following
options: Arithmetic, Relational, Logical, Bitwise, Functions, and Tags. With the exception of the
Tags option, all of these options are explained in the Event Scripts section above.

Clicking the Tags button for alarm scripts gives you the following options, as shown below.

Filter Wizard
Clicking Filter Wizard opens the Filter Wizard dialog box, shown below, which allows you to
choose filters for alarm types and sub conditions. The Filter Wizard, shown in the figure below,
allows you to choose from the following to items enter in your expression. Select one or more items,
and then click OK. The filter string is automatically inserted into the Edit Expression dialog box.

• Alarm Types: Alarm, Ack, Unack, Tracking, and Operator

• Subconditions: LoLo, Lo, Hi, HiHi, ROC, and Digital

Figure 34. Filter Wizard

ProcessView

33

Selecting Alarm Attributes
Clicking Advanced opens the Alarm Tag selection box, which allows you to choose alarm
attributes for your alarm filter. Select the attribute that you want to include in the filter expression
and click OK.

Figure 35. Alarm Tag Selection Box

There are two additional attributes available for use in filtering: Alarm Type and Current Time.
The Alarm Type attribute allows you to filter alarms according to ALARM 1, ACK 2, UNACK 3,
OPER 4, TRACK 5 or NORM 6. For example, you can set up a filter with the condition:

 X = {{AlarmType}}

If the Alarm Type is true, then the alarms are displayed. If they are false then, the alarms are not
displayed.

The Current Time attribute allows you to filter according to the current time. Only alarms occurring
around the current time will be displayed.

Example Alarm Filters

Expression Result

X = {{Severity}} > 500. Only alarm messages with a severity greater than
500 will be visible.

X = Like({{Source}}, $"Tag"$,0) Only messages with the tag in the source name will
be displayed.

X = 1. Filter displays all messages.

X = 0. Filter does not display any messages.

All filters resolve to TRUE or FALSE. All nonzero values resolve to TRUE.

For more information, please see the AlarmWorX Server documentation.

For global aliases within the expression, use the following syntax:

<#global_alias_name#>

ScriptWorX

34

Example:

x=<#RoomTemperature#>

Selecting Global Alias Browser opens the Global Alias Browser, as shown in the figure below.
Select a global alias from the Global Alias Browser, which includes all global aliases in the global
alias database. This eliminates the need to manually type in the alias name. All global aliases that
are configured in the Global Alias Engine Configurator are conveniently available to choose from
inside the browser. The tree control of the Global Alias Engine Configurator is mimicked in the tree
control of the Global Alias Browser. Select a global alias by double-clicking the alias name (e.g.
"Floor" in the figure below). The alias name appears at the top of the browser, which automatically
adds the <# and #> delimiters to the alias name. Click the OK button.

Figure 36. Selecting an Alias From the Global Alias Browser

Automation in ScriptWorX

Script
A script is a public subroutine written in the VBA Editor that must be saved as a standalone project.
The standalone project is then compiled into a DLL when switching to runtime (automatically). You
can also choose to manually compile the DLL at any point by selecting Make VBA DLL (Ctrl+B)
from the File menu in ScriptWorX.

Script Instance
A script instance is a running instance of the script. The ScriptWorX32.exe is able to load the
VbaMT DLL (VBA multi-threaded DLL) described above, and start a script that is stored in compiled
form inside. There can be about 400 instances running concurrently.

ScriptWorX Automation
The ScriptWorX Engine has an automation interface that will be available to any other automation
application, such as GraphWorX. The following is a list of methods that are allowed to control and
use ScriptWorX.

ScriptWorX 7.0 has a new set of inter-threaded communication objects, which allows you to create
your VBA scripts simply and more stable. These objects are very important to the current
ScriptWorX design. Every VBA script runs in separated thread, and these VBA scripts needs to
communicate somehow.

ProcessView

35

• Swx32GlobalStorage object

It is a set of objects that allows storing and manipulating data between different VBA script threads.

• IQueue object

This object implements data queueing capability. One or more VBA scripts are getting data from the
queue and the other threads are putting them into. It is a key object to create scripts with thread
safe data processing. Typical usage is:

Create one ScriptWorX “infinite” VBA script triggered as global script at the beginning and
implement data processing into it (e.g. data logging capability with all the database connections,
sending emails, etc.)

Then create one or more VBA scripts driven by periodic events or alarm events, which will put its
data into the queue object. These scripts will end up as fast as possible to prevent ScriptWorX
threads blocking.

• ICounter object

Implements thread-safe counter with upper and lower boundaries.

• IDataPoint object

Allows easy OPC data access (it is using GenBroker/GenClient support to access OPC servers).

• IObjectVariable

Thread safe automation pointers (IDispatch) distribution.

• IVariable

Thread safe update or exchange of VARIANT variables.

• Swx32Synchronization object

This object contains a set of two thread synchronization objects.

• IEvent object

Thread events with timeouts – one thread is waiting for setting event from other thread.

• ILock object

Thread locking with locking timeout.

• Property ThreadsRunning as Long

The number of threads currently running.

• Property LoggerLCID as Long

The ID number of the logger.

ScriptWorX

36

• Property MessageLCID as Long

The ID number of the message.

• Function CreateVariable(Name as String)

Creates a global variable and initializes it to zero.

• Function DestroyVariable(Name as String)

Destroys the specified global variable.

• Function GetServerTime(pLowDateTime as Long, pHighDateTime as Long)

Gets the current time.

• Function GetVariable(Name as String) as Long

Gets the content of a global variable.

• Function PrintToConsole(Message as String)

Prints the message to the ScriptWorX console.

• Function ResumeScript(ScriptID as Long)

Resumes script instance ScriptID. ScriptID was returned from StartScript() call in output parameter.

• Function SetVariable(Name as String, newVal as Variant)

Sets a global variable to the specified value.

• Function StartScript(ScriptName as String, Project as String, Module as String, StrGUID as
String, ScriptID as Long) as Long

Starts instance of ScriptName from VBA MT library identified by a DllProgID. The DLL library must
be compiled and registered in the VBA Editor. The output parameter ScriptID is used in subsequent
calls to identify the script.

• Function StopThreads()

Stops all running threads.

• Function SuspendScript(ScriptID as Long)

Suspends script instance ScriptID. ScriptID was returned from StartScript() call in output parameter.

• Function TerminateScript(ScriptID as Long)

Terminates script instance ScriptID by a soft method. ScriptID was returned from StartScript() call in
output parameter. Note this is dangerous operation that can cause loss of data and resource leaks.

ProcessView

37

• Function TerminateAllScripts()

Terminates all running instances of scripts by a soft method.

• Function TerminateThreads()

Terminates all running threads by a soft method.

• Function VariableExists(Name as String) as Boolean

Returns true if the specified global variable exists.

• Function Alarm32_SetEvents(EventList as Variant)

Sets events for Alarm Server.

• Function Alarm32_GetEvents(EventListPtr as Variant)

Gets events from Alarm Server.

• Function Alarm32_SetSubscriptions(Subscriptions)

Sets subscriptions for Alarm Server.

• Function Event32_SetEvents(EventList as Variant) as Long

Sets events for Event32 Server.

• Function Event32_GetEvents(EventListPtr as Variant)

Gets events from Event32 Server.

• Function ExitServer()

Shuts down the server by closing the ScriptWorX visible client.

• Function GetSecurity(SecurityID as Long) as Boolean

Gets security on the specified item.

• Function Periodic32_SetEvents(EventList as Variant)

Sets events for Periodic32 Server.

• Function Periodic32_GetEvents(EventListPtr as Variant)

Gets events from Periodic32 Server.

• Function SetConsoleLoggerOptions(ConsoleLoggerOptions as Long)

Sets the ScriptWorX console logger options.

ScriptWorX

38

• Function SetEventLoggerOptions(EventLoggerOptions as Long)

Sets the NT event logger options.

• Function SetMonitorPtr(pDispatch as Object)

Set back-pointer where the SwxEngine notified events to.

• Function SetWorkingDirectory(WorkingDirectory as String)

Sets the ScriptWorX Engine current working directory.

• Sub StartRuntime()

Starts runtime mode in ScriptWorX.

• Sub StopRuntime()

Returns ScriptWorX to configuration mode.

All of these actions are called from the ScriptWorX user interface but may be used by any other
application as well. This means any other application will be able to run and control scripts, obtain
monitor notifications about running instances, programs the in-proc servers, and so on. Other
applications should only need to use the StartScript() method.

ScriptWorX is registered at GenRegistrar and is thus available to all other applications.

Writing a Script

Introduction
Once you have configured the triggering of the script, it is necessary to write the corresponding
script itself. A script is a Visual Basic for Applications (VBA) public subroutine stored in the
referenced project and module, as configured in the trigger options in the ScriptWorX user interface.

Note
ScriptWorX supports ScriptWorx/VBA document synchronization and contains has VBA Script
Wizards, which greatly simplify the creation of new scripts.

Note
It is strongly suggested that the configuration of a script in the ScriptWorX user interface and the
writing of the script be conducted simultaneously. This will help to ensure that the Script, Project,
and Module names match up correctly, and will also make testing the script and its configuration
much easier.

1. Before writing the script, it is necessary to set the working directory, which is the directory
where the compiled .dll will be located and where all configuration files will be saved. To set the
working directory, select Set Working Directory from the Tools menu.

2. When you are ready to write a script, either click on the Visual Basic Editor button on the
toolbar, or select Macros - Visual Basic Editor from the Tools menu. This will launch the Visual
Basic Editor, where you will write the script.

3. Once in the Visual Basic Editor, make sure the project name and module correspond to the
entries made in the ScriptWorX user interface. The script name will correspond to the name used in
the actual code, as shown below.

ProcessView

39

 Public Sub ScriptName()

Msgbox "hello"

End Sub

Note
All scripts are written in Visual Basic and obey all rules and methods therein. For questions
regarding the actual writing of the code, please refer to the Visual Basic documentation.

4. Once the code has been written, save the project by selecting Save As from the File menu,
and enter the same project name as was referenced in the configuration of the script.

5. Compile the VBA file by selecting Make ProjectName.DLL from the File menu.

6. After the file has been compiled, close the Visual Basic Editor and return to ScriptWorX.

7. Enter runtime mode and watch the scripts execute.

Examples
Several examples of ScriptWorX configurations are provided in the installation under the
Smar\ProcessView\Examples directory in the "ScriptWorX Examples" folder. Except for the "Outlook
Mail" and "Running Display" examples, each example can be configured using the text file that is
associated with the example.

Carousel
The Carousel example opens a GraphWorX display file every time the script is run. The displays to
be shown are listed in the text file "Carousel.txt," which is located in the ScriptWorX Examples
Directory. Notice that the files listed do not have a path. The example reads a line from the file and
pastes the path of GEN32DEMO in front of the line. This means that all displays that you want to
add to the Carousel must be located in the GEN32DEMO directory.

To use this example, you must have GraphWorX installed on your computer, as well as the
GEN32DEMO Example. Make sure that the GWX Object is selected in the Tools - References
menu in the VBA Editor.

Customer DB
The Customer DB example cannot be configured. Every time the launchCustomerForm method is
called, a VBA form appears. Fill in this form and click the Close button. The data entered in the form
will then be saved in a Microsoft Access Database "CustomerDb.mdb" file using the Microsoft DAO
3.51 Object.

Excel Logger
The Excel Logger example writes OPC tag values to Microsoft Excel using the Excel OLE
automation interface. The Excel file and the OPC tags to be logged are stored in the text file
"ExcelLogger.txt." The first line in the file is the location of the Excel File where the log should be
written. The remaining lines are valid OPC tags.

Note
The module used to retrieve the OPC tag values only supports local OPC servers. To use this
Example, you must have Microsoft Excel 97 or 2000 installed on your computer. Make sure that
the Microsoft Excel Object (version 8.0 or 9.0) is selected in the Tools - References menu in the
VBA Editor.

ScriptWorX

40

Outlook Mail
The Outlook Mail example writes OPC tag values to a Microsoft Outlook mail message. You can
select the tags to log in the configuration form what appears when calling the showConfiguration
method. In this form, you also can select the recipients and the subject of the message.

Every time the method sendMail is called, the example will open Microsoft Outlook, retrieve the
current values of the selected OPC tags, and write these values in the e-mail message. When these
tasks are completed, the message is sent and Microsoft Outlook is closed.

To use this example, you must have Microsoft Outlook installed on your computer, and the Outlook
Object must be selected in the Tools - References menu in the VBA Editor.

Word Logger
The Word Logger example writes OPC tag values to Microsoft Word using the Word OLE
automation interface. The Word document and the OPC tags to be logged are stored in the text file
"WordLogger.txt." The first line in the file is the location of the Word Document where the log should
be written. The remaining lines are valid OPC tags.

Note
The module used to retrieve the OPC tag values only supports local OPC servers. To use this
example, you must have Microsoft Word 97 or 2000 installed on your computer. Make sure that the
Microsoft Word Object (version 8.0 or 9.0) is selected in the Tools - References menu in the VBA
Editor.

Script Configuration Examples
The following are detailed examples of how to configure scripts using ScriptWorX.

Beep
The first example is very simple and is designed as a test to make sure that ScriptWorX is
communicating properly between all of its parts. With the help of Script Wizard and automatic
document synchronization, the creation of new script trigger and script itself is an easy task.

Example 1

1. Open a new ScriptWorX file.

2. Insert a new periodic script by right-clicking Periodic Scripts on the tree view in the left-hand
pane and selecting Insert Trigger. Alternatively, select Insert New Trigger from the Edit menu, or
simply click the Insert Trigger button on the toolbar.

3. Save the configuration file under desired the name, e.g. Sample.swx.

4. Check that the Project and Module/Designer fields are automatically filled in for you. The
Project corresponds to the VBA project, and the Module corresponds to the VBA designer module.

5. Select the Interval tab, and make sure that the 1 second interval is already entered.

6. In the configuration screen, change the name to doBeep in the Trigger Name and Script
Name fields. The script name corresponds to the name of the script placed in VBA Editor in the
related Project and Module.

7. Click Apply.

8. Click the Edit VBA Code button. The VBA Editor opens, and the script skeleton is already
created there:

Public Sub DoBeep()

 ' TODO: Add your procedure code here

End Sub

ProcessView

41

9. Enter the body of the script:

Beep

10. Compile the project into .dll by selecting Make Sample.dll from the File menu in the VBA
Editor.

11. Click the Runtime menu in ScriptWorX.

Example 2

1. Open a new ScriptWorX file in the user interface.

2. Insert a new periodic script as described above.

3. Enter the following information into the proper fields for this new script, as shown below.

Field Entry
Script Name: doBeep

Project: beeper

Module/Designer: mdlMain

Start Date/Time: Current

End No end date/time

Trigger Interval: 5 sec

Figure 37. doBeep Configuration

4. It is also necessary to set the working directory. This will be the directory where the compiled
.dll file will be located, as should all configuration files directly related to this project. To set the
working directory select Set Working Directory from the Tools menu.

5. Once the script has been configured as shown above, save the configuration file by selecting
Save As from the File menu. Enter Beeper.swx as the file name.

6. Before this script is ready to be run, it is necessary to actually write the script. To do so, click
the Visual Basic Editor button on the toolbar, or select Macros - Visual Basic Editor from the
Tools menu.

7. In the Visual Basic Editor, open a new project by selecting New Project from the File menu.
The New Project dialog box will open, as shown below.

ScriptWorX

42

Figure 38. New Project Dialog Box in VBA Editor

8. Select Multi-threaded Project from the dialog box.

9. In the Properties window of the VBA Editor, change the name of the module from Designer1 to
mdlMain. (Note: this is the same module name used in the configuration of the script.)

10. From the Project Explorer window, select the mdlMain object and enter the following code:

Public Sub doBeep()

 Beep

End Sub

Notice that the script name, doBeep, is used in the code. This is how the script will be able to run
properly.

11. At this point the script is effectively written. It is now necessary to save and compile the project
.dll and save the project. First save the project by selecting Save As from the File menu. Name the
file beeper.vba. Make sure the file is saved into the working directory that you set earlier.

12. Now compile the project .dll by selecting Make beeper.DLL from the File menu.

13. Once the .dll has been compiled, close the Visual Basic Editor by selecting Close and return
to ScriptWorX from the File menu.

14. Now it is possible to run the script from the user interface. To run the script, either select
Runtime! from the menu bar, or click the Runtime button on the toolbar. This will launch the
Runtime Monitor, which will show all scripts that are running, as well as each instance of each script
that has run.

The script we have constructed in this example will beep every five seconds. If this does not occur
during runtime, check your VBA code and your script configuration to make sure that the Script,
Project, and Module names are consistent throughout.

ProcessView

43

Send Mail
This next example will start an instance of Microsoft Outlook, open a blank message file, address
the message, and send the message.

1. To start off, insert a global script with the following properties.

Field Entry
Script Name: sendMail

Project: SWX_Mailer

Module/Designer: mdlMailSender

Start Date/Time: Current

End No end Date/Time

Trigger On Entering Runtime

Figure 39. Send Mail Script Configuration

2. Once you have set up the configuration according to the specified properties save the
configuration by selecting Save As from the File menu. Enter SWX_Mailer.swx as the file name.

3. Now enter the code behind the script. To do so, start the Visual Basic Editor.

4. To use this example, you must have Microsoft Outlook installed on your computer, and the
Outlook Object must be selected in the Tools - References menu in the VBA Editor.

5. Change the name of the module to mdlMailSender, and enter the following code in the code
body window.

Public Sub sendMail()

 MsgBox "Before"

 Send_An_Email "test@smar.com", "", "", "myTest", "Hello from ScriptWorX"

 MsgBox "after"

End Sub

Sub Send_An_Email(P_to As String, P_cc As String, p_bcc As String, subject As String, m_text
As String)

ScriptWorX

44

On Error GoTo errHandler

Dim OutApp As Outlook.Application

Dim OutMail As Outlook.MailItem

Dim y As Integer

Dim bodytext As String 'text of e-mail

Dim Str_to_send As String 'value to send

 Set OutApp = CreateObject("Outlook.application")

 Set OutMail = OutApp.CreateItem(olMailItem)

 OutMail.To = P_to

 OutMail.CC = P_cc

 OutMail.BCC = p_bcc

 OutMail.subject = subject

 OutMail.Body = m_text

 OutMail.Send

 OutApp.Quit

 resetObjects:

 Set OutMail = Nothing

 Set OutApp = Nothing

 Exit Sub

errHandler:

 MsgBox Err.Description, vbCritical, Err.Number

 GoTo resetObjects

End Sub

6. Once the code is entered, save the code and compile the .dll.

7. After the .dll has been successfully created, close the Visual Basic Editor and return to
ScriptWorX.

8. Now it is possible to run the script from the ScriptWorX user interface. To run the script, either
select Runtime! from the menu bar, or click the Runtime button on the toolbar.

9. This will launch the Runtime Monitor, which will show all scripts that are running as well as each
instance of each script that has run.

While this script is running, it will launch a message box with the label "Before" (this text can be
change by replacing this entry in the code). Once the OK button is clicked in this box, the test
message will be sent. After the message is sent, a similar message box with the label "After" will be
displayed.

Note
To test to make sure this script is working correctly, enter your email address in place of
test@smar.com.

ProcessView

45

Script Wizard
The Script Wizard is a tool that is available from each script configuration window and that allows
you to generate scripts from script templates. Each script template is stored in one script template
file (.stp), which is located in the Script Wizard Template directory placed in the installation directory
of ScriptWorX. Script templates support several keywords, which are replaced during script
generation by values entered by in the Wizard edit fields. Script templates also support the addition
of necessary TypeLib references that can be appended to the VBA container. TypeLib references
and optional keywords must be specified in the header section of the script.

Running the Script Wizard
To run the ScriptWorX VBA Script Wizard, insert a script configuration in the ScriptWorX
user interface and click the VBA Script Wizard button on the configuration screen. Doing
so will open the following window.

Figure 40. Script Wizard

The Script Wizard provides several categories of script templates from which to generate a script.

Description
The Description section tells you what the script is supposed to be doing and what components
need to be installed on your system before the script will run properly. The text that is shown in this
section is the text that was entered in the VBA code after the #Description keyword.

Parameters
Depending on the category and the script selected, several items are available in the Parameters
section of the window. As stated in earlier sections, the parameters available are set in the
configuration of the script template by using the #Parameters keyword. The entries for each of
these fields will be directly inserted into the script and will determine exactly how the scripts run.

ScriptWorX

46

Installed Script Categories
There are five installed script template categories: AlarmWorX, General, GraphWorX, OPC
Automation, and TrendWorX. Each of these categories includes associated scripts. Each script
includes a description of what the script does and what components must be installed.

AlarmWorX

Script Description

AwxBackgroundC
olor

Set background color of AWXView ActiveX. GraphWorX and AWXView must
be installed.

AwxOpenFile Open GraphWorX display with an AWXView ActiveX and load the AWXView
configuration file.

AwxPrintFile Print the display containing the AWXView ActiveX. GraphWorX and
AWXView must be installed.

AwxSetFilter Set filter name and filter expression for AWXView ActiveX. GraphWorX and
AWXView must be installed.

AwxStartRuntime Enter Runtime Mode. GraphWorX and AWXView must be installed.

AwxStopRuntime Exit Runtime Mode. GraphWorX and AWXView must be installed.

AwxTextColor Set text color of AWXView ActiveX. GraphWorX and AWXView must be
installed.

General

Script Description

Beeper This script Beeps when started.

DiskSpace The script obtains total and free disk space.

HelloSmar The script pops up a message box that says "Hello from Smar."

Keypad The script displays a Keypad form for entering a text string.

Memory The script obtains total and available physical memory.

Numpad The script displays a Numpad form for entering a double value.

GraphWorX

Script Description

GwxArrayOfEllipses Script starts GraphWorX and creates an array of ellipses, where
the array dimensions and ellipse properties are specified.

GwxArrayOfRectangles Script starts GraphWorX and creates an array of rectangles, where
the array dimensions and rectangle properties are specified.

GwxClosePopup Window Script starts GraphWorX and opens the popup window specified in
the File Name field. Then the popup window is closed.

GwxEmbeddedWindow Script starts GraphWorX and opens the display selected in

ProcessView

47

Script Description
the File Name field as an embedded window.

GwxIterateObjects Iterates all symbols and their subsymbols in the display.

GwxMaximizeWindow Script starts GraphWorX and maximizes its window. GraphWorX
must be installed.

GwxMinimizeWindow Script starts GraphWorX and minimizes its window. GraphWorX
must be installed.

GwxOpenDisplay Script starts GraphWorX and opens the display selected in the File
Name field.

GwxPopupWindow Script starts GraphWorX and opens a popup window specified in
the File Name field. Use the Browse button.

GwxPrintDisplay Script starts GraphWorX, and opens and prints the display
selected in the File Name field.

GwxSetBackgroundColor Script starts GraphWorX and changes the display background
color.

GwxSetDisplayDimensions Script starts GraphWorX and sets the display dimensions (work
area/world bounds) of the currently loaded display.

GwxSetWindowDimension
s

Script starts GraphWorX and sets the GraphWorX main window
size and location as a percentage of the total screen size.

GwxStartRuntime Script starts GraphWorX and switches to runtime mode.
GraphWorX must be installed.

GwxStopRuntime Script starts GraphWorX and stops runtime mode.

GwxToggleRuntime Script toggles GraphWorX runtime mode. GraphWorX must be
installed.

ScriptWorX

Script Description

Infinite Script: Implements body of an “infinite” script. It loops and waits for the
ScriptWorX shut-down event.

Queue Source: Queue source implementation with error handling.

Queue Target: Queue target implementation with error handling – an infinite script
with queue data reading.

ReadOPCTag: Read an OPC tag using IDataPoint object; waits for the first update.

ReadOPCTag_NoWait: The same as “ReadOPCTag” script, but it does not wait for the first
update.

WriteOPCTag Write an OPC tag using IDataPoint object.

ScriptWorX

48

TrendWorX

Script Description

TwxAddTrend Adds real-time trend to the TrendWorX Viewer. GraphWorX and
TrendWorX Viewer must be installed.

TwxBackgroundColor Sets TrendWorX Viewer background color. GraphWorX and
TrendWorX Viewer must be installed.

TwxDeleteTrend Deletes real-time trend pen. GraphWorX and TrendWorX
Viewer must be installed.

TwxOpenFile Script starts GraphWorX display with a TrendWorX Viewer
ActiveX. GraphWorX and TrendWorX Viewer must be installed.

TwxPrintFile Prints the display containing the TrendWorX Viewer ActiveX.
GraphWorX and TrendWorX Viewer must be installed.

TwxShowDetails Shows or hides the detailed list of trends. GraphWorX and
TrendWorX Viewer must be installed.

TwxShowTitle Shows or hides the TrendWorX Viewer title. GraphWorX and
TrendWorX Viewer must be installed.

TwxStartRuntime Enters runtime mode. GraphWorX and TrendWorX Viewer must
be installed.

TwxStopRuntime Exits runtime mode. GraphWorX and TrendWorX Viewer must
be installed.

Using a Template
To access a script template, open the ScriptWorX user interface and click the VBA Script Wizard
button. This will open the Script Wizard as described above.

1. Select the desired category and select the appropriate script from the list.

2. Click on the script. The description of the script should appear in the Description field.

3. Once you have set up the Wizard as desired, click the Generate Script button. The ScriptWorX
user interface will be restored, and you will be asked if you want to view the VBA code.

Script Wizard Creation and Maintenance
This section is for more advanced users who wish to create their own script template files.

Header Section
The header section can contain optional keywords, which must be in the following format:

 #KEYWORD: value

Optional keywords:

#REFERENCE: module1

#REFERENCE: module2

#REFERENCE: …

− Add TypeLib references to VBA .

ProcessView

49

#DESCRIPTION: text1

#DESCRIPTION: text2

#DESCRIPTION: …

− Enter script information that will be displayed in the Script Wizard dialog box.

− Description can be placed on several lines. Each of them must begin with the same keyword.

#PARAMETER: parameter

− Parameter may be one of the following strings.

− Pay attention to filling in this section; 'parameter' must be spelled correctly!

− Parameters are exclusive; i.e. only one of them can be used at a time.

par_FileName - Script template includes file name parameter.

par_Tag - Script template includes OPC tag.

par_None - Has no effect.

The header section must be ended by a keyword:

 #END

This marks the end of header section. It is the only compulsory header keyword. The other
keywords are optional.

Optional and Required Parameters in Scripts
Optional parameters must be defined in the header section as described above. These parameters
are one of the following:

 par_FileName, par_Tag

Required parameters can be used without definition in the header section (because the related
entry fields are always used in the Script Wizard dialog box). Required parameters are:

 par_Name, par_Key, par_Node

When parameters are used in the script template code, they must be enclosed by << and >>
characters.

Parameters are replaced during script generation by the values specified by the user in the related
edit fields.

par_FileName - When declared, the Script Wizard displays the edit field and Browse button
to specify the file name.

par_Tag - When declared, the Script Wizard displays the edit field and Browse button
to specify the OPC tag.

par_Name - Contains the script name.

ScriptWorX

50

par_Key - GenRegistrar key parameter.

par_Node - GenRegistrar node parameter.

Script Template Sample
#REFERENCE: Gwx32

#DESCRIPTION: Script starts GWX32 and opens display selected

#DESCRIPTION: in the FileName field.

#DESCRIPTION: Note Gwx32 must be installed.

#PARAMETER: par_FileName

#END

' Script <<par_Name>> was generated by Smar Script Wizard

' from a template OpenDisplay.stp

'

Public Sub <<par_Name>>()

 ' Create an instance of GWX32

 Dim gwx As Gwx32.GwxDisplay

 Set gwx = New Gwx32.GwxDisplay

 If gwx Is Nothing then

 ' Report problem and exit

 MsgBox "GWX32 creation failed. Check it is installed and registered"

 Exit Sub

 End If

 call gwx.FileNew

 call gwx.FileOpen("<<par_FileName>>")

 call gwx.BringWindowToTop

 call gwx.ShowWindow

 MsgBox "Close GWX"

 call gwx.ExitApplication

 set gwx = nothing

End Sub

Example
In this example, we will create both a script wizard and a script as a result of this wizard, and will
incorporate both the #DESCRIPTION and #PARAMETER keywords.

ProcessView

51

Building a Template
To start, open the ProcessView/Bin/Script Wizard directory. In this directory, you will find folders
representing all of the above mentioned template categories.

1. Create a new category called Tutorial by creating a new folder in the Script Wizard directory
and giving it the appropriate name.

2. Create a new .txt file and rename it Tutorial.stp.

3. You have now created a blank file that can be edited using notepad. Double-click on this newly
created file.

4. You are now ready to start writing the code for your Script Wizard. To enter the information that
will appear in the Description field, enter the following code:

#DESCRIPTION: This is a trial script.

#DESCRIPTION: It will display a message box.

The reason for having two different lines is that the Description field in the Script Wizard interface
has a preset length and does not wrap text within the box. Once the Wizard is saved, check to make
sure that all of your description text is visible to the user, as shown below:

Figure 41. Description Section

5. Enter the following parameter keyword:

#PARAMETER: par_FileName

Entering this parameter will add the FileName field to the Script Wizard, as shown below:

Figure 42. Parameter Section

Note
If the par_Tag parameter had been used, the FileName field would be attached to an OPC tag,
and the Browse button would launch the OPC Universal Tag Browser.

6. Enter the end keyword: #END

This will indicate the end of the header section of the Wizard.

The code that makes the basis of the script is Visual Basic code, which references the different
parameters set in the header. For our example, we will be creating a simple message box
referencing a file selected by the user.

Note
The complexity of what a Script Wizard can accomplish is based solely on the extent to which the
programmer is able to program in Visual Basic.

ScriptWorX

52

7. Enter the following code directly beneath the header section:

' Script <<par_Name>> (generated by the ScriptWizard from Tutorial)

Public Sub <<par_Name>>()

MsgBox "What do you want to know about <<par_FileName>>!!!"

End Sub

The entry for <<par_Name>> is taken from the ScriptWorX user interface Script Name field. The
entry for <<par_FileName>> is set in the Script Wizard user interface and is available since it was
added in the header section.

After the script is coded as desired, save the file and close the instance of Notepad.

Using the Template
To access the script template that you have just created, open the ScriptWorX user interface and
click the VBA Script Wizard button. This will open the Script Wizard as described above, but the
Wizard should now contain an additional category called Tutorial.

Note
If this new category is not available, check to make sure that the folder containing the template is
located in the same directory as the other template category folders.

1. Select the Tutorial category. The script template Example should be displayed in the scripts
list.

2. Click on this script. The information you entered using the #Description keywords should
appear in the Description field, and the Parameters section should contain the default Node and
Key fields as well as the Optional FileName field.

3. To select a file name to be used in the script, click the Browse button and use the Open dialog
to browse through available files.

4. Once you have set up the Wizard as desired, click the Generate Script button. This returns
you to the ScriptWorX user interface. You will be asked if you want to view the VBA code.

