

CONTROLLERS DATASHEET DF89 HSE/Modbus Controller

DF89 - HSE/Modbus Controller

TECHNICAL INFORMATION

Product Description

DF89 module is the Smar solution for Modbus applications in the **SYSTEM302**. Its main feature is working as Modbus-HSE controller to provide power to the connectivity and flexibility to the system application. Through the HSE network and other DFI302 modules, it is possible the communication between field devices and other industrial protocols, providing greater flexibility to the control strategy projects. Through the I/O cards, it is also possible to execute discrete control via relay diagram logic ("Ladder Diagram"), allowing a single and integrated system.

Main Characteristics

Functionalities:

- HSE Field Device
- Modbus Gateway (serial and TCP/IP)
- Ethernet connectivity

Characteristics and Controller Limits

- Two 10/100 Mbps Ethernet Ports;
- One RS-232/RS-485 Modbus RTU port;
- Support up to 100 FOUNDATION fieldbus function blocks;
- Support Flexible Function Block (FFB);
- Discrete control via relay diagram;
- Access to I/O modules;
- Webserver;
- Modbus master and slave;
- Redundant operation;
- Real Time Clock (RTC) and watchdog;
- Supervision for up to 2000 points per second;
- It supports up to 16 HART modules (DF116/DF117).

Available Memory:

Volatile Memory	8 Mbytes
Non Volatile Memory *	4 Mbytes
EEPROM	1 kbyte
Flash to the program	4 Mbytes
Flash to monitor	2 Mbytes

^{*} It is kept by not rechargeable internal battery.

Continuous Control with Foundation Fieldbus

The DF89 module is a HSE device, with block execution capability. It has up to 100 blocks, including a Flexible Function Block (FFB) to link FOUNDATION fieldbus control strategies with Ladder diagrams. Through configuration tools available in the **SYSTEM302** it is possible to configure the DF89 completely.

HSE Communication

- . Maximum of 512 link objects;
- . Limit of 128 linked parameters;
- . Dynamic block instantiation. Maximum of 100 function blocks;
- . Support for Flexible Function Block, with 242 parameters which can be linked to interface between the discrete and continuous control.

Discrete Control

DF89 module also has the capability of access I/O cards through the IMB (Inter-Module Bus), present in the backplane where the DF89 is mounted. Through the IMB, up to 16 racks can be interconnected, each one having up to 4 cards. If there is a redundant controller is necessary the use of rack DF78 or DF92. If DF78 is used plus 16 racks DF1A can be added. If DF92 is used plus 16 racks DF93 can be used. Additional power supplies in others racks can be necessary depending on the load of the cards.

DF Line of I/O cards that can be used:

Digital inputs and outputs	
Analog inputs and outputs*	
Temperature	
Pulse counting	

The user program is developed using relay diagrams (IEC-61131-3), through the LogicView for FFB tool, available on System302. The LogicView for FFB is a complete development environment, allowing the user to create, edit, simulate and supervise the developed application. The interconnection with fieldbus is made through a flexible function block.

General Characteristics of the discrete control in the DF89:

1/0 D : 1 *	512 discrete points or
I/O Points*	256 analog (maximum)
Auxiliary Points	4096 points (maximum)
Ladder Function Blocks	1200 blocks (maximum)
Configuration File	60k bytes (maximum)
Program Execution Cycle for 1000 boolean opreations (without redundancy)	50 ms (minimum)** 90 ms (typical)***
Program Execution Cycle with redundancy	Increment of 10ms (typical)**** up to 50 ms (maximum) to execution cycle
Execution Average Time	5.8 ms/Kbytes of program (minimum) 10.5 ms/Kbytes of program (typical)
Modbus	Modbus RTU Slave in the RS- 232/RS-485 serial port and Modbus TCP Slave in the Ethernet port.
TCP/RTU Modbus Master	Up to 1024 discrete points and 512 analog. Up to 32 serial Modbus devices and 32 TCP Modbus. Up to 12 Modbus TCP connections.

The whole number of points includes inputs and outputs, analog or digitals. Maximum quantity may change according I/O type used.

** Priority of 1131 Flexible Function Block adjusted to Zero (Very High Priority) and no

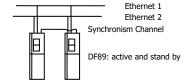
other function blocks and HSE links are configured. Each 1000 boolean operations allocate 8.6 Kbytes.

compatible with the quantity of function blocks and HSE links.

The extensive library of LogicView for FFB function blocks allow the implementation of discrete and/or continuous control.

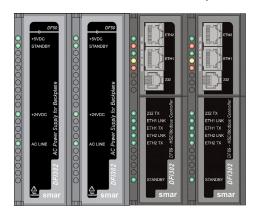
The complete list can be seen in the LogicView for FFB manual available on the Smar website.

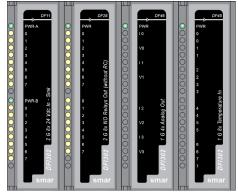
The size of the configuration file and its time of execution can be estimated through a simple addition of the elements that compose the program. The total execution time will be given by the configuration execution time plus the program execution cycle, that is 10ms.


Redundant Operation

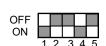
DF89 can operate in stand alone (one DF89) or redundant (two DF89) mode. In redundant mode, the two DF89s are capable to communicate through a proprietary channel and change information about configuration and operation status.

Some DF89 elements are redundant:


- **HSE Block Redundancy**
- HSE link Redundancy
- Ladder Redundancy
- Supervision Redundancy
- Ethernet Media Redundancy


Topology to interconnection of DF89s in redundancy:

Redundancy General Characteristics:


For redundancy of access in I/O cards, it is necessary the use of a special rack (DF78 or DF92). The two power supplies and the two DF89 must be mounted on this rack, in that order. The remaining modules can be interconnected as usually.

Internal Battery

The DF89 Real Time Clock (RTC) and its non volatile RAM (NVRAM) are maintained by a non-chargeable battery when there is lack of external supply. This battery can be either enabled or disabled, depending on the position of the switch 1, in the back part of the DF89. To enable the battery, let the switch 1 as the following picture:

- 1) Battery ON
- 2) Keep in this position
- 3) Simulate
- 4) Watchdog ON
- 5) Keep in this position

In this configuration, when there is lack of energy, the RTC and the NVRAM will be supplied by the battery, allowing the retention of all configuration data. In case of equipment storage, it is recommended that the battery is turned off (switch 1 in position OFF).

Battery Features:

Type of battery	Battery Panasonic BR- 2/3AE2SP - Lithium
Capacity	1200 mAh
Devices maintained by the battery	RTC and NVRAM
Minimum life spam	8 years (typical charge of 17uA)
Maximum life spam	49 years (typical charge of 2.8uA)
Voltage	3 V (subject to revision when below 2.5 V)

^{***} Total execution time will change depending on the adjusted priority of 1131 FFB. The adjustment should be

^{****} The whole execution time may change depending of the configuration file size.

Ports and Communication Channels

Ethernet Port:

Communication rate	10/100Mbits
Standard	IEEE 802.3u
Isolation	150Vrms
Operation Mode	Full-duplex
Connector	RJ45 with shield*

^{*} Grounded to the rail used for fixing the rack in which the DF89 is installed.

Modbus Port:

Communication Rate (Maximum)*	115200 bps
Standard	RS-232 and RS-485 (one port with two physical media)
RS-232 Connector**	RJ12 with shield
RS-485 Connector	3-pin terminal block
Maximum Current ***	0.5A @ 3.3V

^{*}There is an increase in error rate as we increase the communication rate over 19200bps. In many situations these errors can be acceptable and they are not noticed by supervision.

** Grounded to the rail used for fixing the rack in which the DF89 is installed.

*** Internally protected by solid state fuse.

Redundant Port

Maximum Communication	115200 bps *
Rate	
Standard	RS-232
Connector	RJ12 with shield**
Maximum Current***	0.5A @ 3.3V

Failure Relay

Output type	Solid state relay, normally closed (NC), isolated
Maximum Voltage	30 VDC
Maximum Current	200 mA
Overload Protection	Not available. Must be provided externally
Normal Operation	Open contacts
Failure Condition	Closed contacts
Maximum cable length connected to the relay	30m

The power supply for the load must not be from an external network (outside the panel).

IMB Bus

Voltage	5 VDC
Bus	8 bits
Failure Signal	Yes
Hot Swap	Yes
Redundancy in the bus	Yes, but only using the DF78
access	or DF92 rack

Module Characteristics:

CONTROLLER

CPU	Family ARM7TDMI
Bus	32bits
Architecture	RISC
Performance	40 MIPS
CPU Cache	8kbytes
Clock	40 MHz
DMA	10 channels
Ethernet	MAC 10/100 integrated
Watchdog	Yes (200ms of cycle)
Operation Voltage	3.3V for I/O

Module:

Operation Voltage	5V (± 5% of tolerance)
Typical Current	550 mA
Real Consumption	2.75 W
Environment Air	0 to 60° C (IEC 1131)
Temperature (Operation)	
Storage Temperature	-20 to 80° C (IEC 1131)
Relative Air Humidity	5% to 95% (non-
(Operation)	condensing)
Cooling Mode	Air Convection
Dimensions (HxWxD, mm)	149x40x138 (without
	package)

Electrical Certification

DF89 follows the immunity test specification to equipment to industrial installation, as IEC61326:2002 standard.

Enclose:

Electrostatic discharge (IEC61000-4-2)	4 kV/8 kV contact/air
EM field (IEC61000-4-3)	10 V/m
Rated power frequency magnet field (IEC61000-4-8)	30 A/m

AC power:

Voltage dip/short	0.5 cycle, each
interruptions	polarity/100%
(IEC61000-4-11)	
Burst	2 kV
(IEC61000-4-4)	
Surge	1 kV/2 kV
(IEC61000-4-5)	
Conducted RF	3 V
(IEC61000-4-6)	

DC power

Burst (IEC61000-4-4)	2 kV
Surge (IEC61000-4-5)	1 kV/2 kV
Conducted RF (IEC61000-4-6)	3 V

^{**} Rate for control information. Data traffic through Ethernet.

** Grounded to the rail used for fixing the rack in which the DF89 is installed.

*** Internally protected by solid state fuse.

I/O signal control

Burst (IEC61000-4-4)	1 kV
Surge (IEC61000-4-5)	1 kV
Conducted RF (IEC61000-4-6)	3 V

I/O Signal Control Connected to Power Supply

Burst (IEC61000-4-4)	2 kV
Surge (IEC61000-4-5)	1 kV/2 kV
Conducted RF (IEC61000-4-6)	3 V

Emission Rate:

Enclose:

30 to 230 MHz	40 dB (uV/m) quasi peak,
(CISPR 16-1, CISPR 16-2)	measured at 10m distance
239 to 1000 MHz	40 dB (uV/m) quasi peak,
(CISPR 16-1, CISPR 16-2)	measured at 10m distance

AC mains:


0.15 to 0.5 MHz	79 dB (uV) quasi peak
(CISPR 16-1, CISPR 16-2)	66 dB (uV) average
0.5 to 5 MHz	73 dB (uV) quasi peak
(CISPR 16-1, CISPR 16-2)	60 dB (uV) average
5 to 30 MHz	73 dB (uV) quasi peak
(CISPR 16-1, CISPR 16-2)	60 dB (uV) average

Note: For most recent updates, please consult Smar website www.smar.com

CONTROLLERS DATASHEET DF89

Rua Dr. Antônio Furlan Junior, 1028 - Sertãozinho, SP - CEP: 14170-480 insales@smar.com.br | +55 (16) 3946-3599 | www.smar.com

