

HART[®] & 4 to 20 mA

- ± 0.02% Accuracy
- Single Unit and Several Options for Sensors and Connections
- Input Signal Isolation
- Advanced Diagnostics
- Supported by DD, EDDL and FDT/DTM
- Sensor Backup
- SIL 2 Safety Certified to IEC 61508 by TÜV

Features

- 0.02% Accuracy;
- Remote configuration via Hand-Held Terminal or via PC;
- Small and lightweight;
- Output limits according to Namur NE43;
- MTBF of 665 years;
- Intrinsically safe;
- Signal simulation for loop test;
- Certified to IEC61508 for SIL 2 (non-redundant) and SIL 3 (redundant) applications;
- EMC (Electromagnetic Compatibility) according to IEC 61326-1:2005 and IEC 61326-3-2:2008;
- Write protection function;
- Universal input accepts several thermocouples, RTD's, mV and Ohm;
- Built-in thermocouples and RTD's linearization;
- Small and lightweight.

HART[®] - 4 to 20 mA

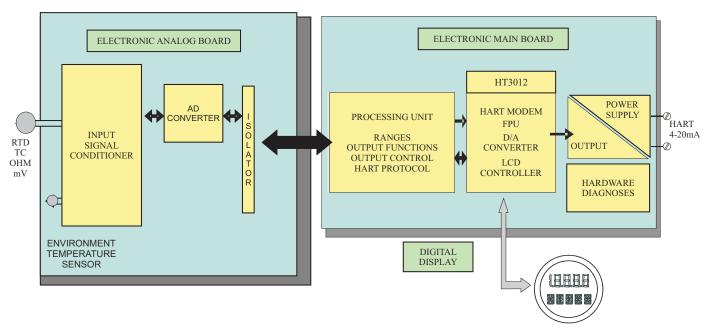
- 2-wire, 4-20 mA output plus direct digital communication;
- Output current with 1.5uA/bit resolution;
- Improved performance due to dedicated math coprocessor;
- Match sensor (Callendar Van Dusen equation);
- Maximum, minimum and average input sensor selection, working with two sensors simultaneously;
- Supports FDT/DTM, DDL/EDDL.

Functional Description

Safety Instrumented Systems are designed and used to prevent or mitigate hazardous events to protected people, the environment or prevent damage to process equipment. The SIS project is based on the damage that a failure can cause.

The **TT400** SIS is certified to IEC 61508 for SIL 1 and SIL 2 (non-redundant) and SIL 3 (redundant) applications, and intendeds for measurement of temperature using RTD's or thermocouples. Also, **TT400** SIS accepts up to two sensors, operating in one of the models listed below:

- Single channel with single sensor measurement;
- Single channel with two sensors (same type) in differential measurement;
- Single channel with two sensors (same type) in backup measurement;
- Single channel with two sensors (same type) with maximum, minimum or average signal selection.



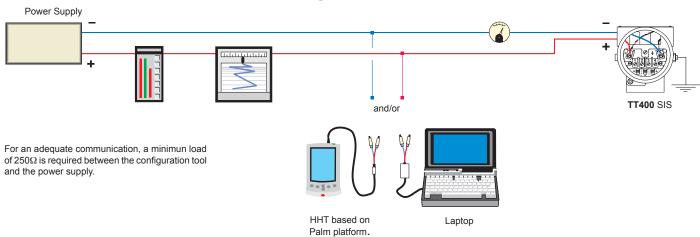
The digital technology used in the **TT400** SIS enables a single device to accept several types of sensors, wide ranges, single or multiple-ended measurement and an easy interface between the field and the control room. It also includes several features which reduce considerably the installation, operation and maintenance costs.

Programming and Diagnostics

TT400 SIS is available in HART[®] technology. It can be configured with Smar software and other manufacturer configuration tools. With Smar AssetView, an user-friendly Web Tool, user can access the plant assets anywhere and anytime using an Internet browser. It is designed for management and diagnostics of field devices to ensure reactive, preventive, predictive and proactive maintenance.

HART®

Configuration Tools:


- Smar CONF401 for Windows;
- Smar DDCON100 for Windows;
- Smar HPC401 for several models of Palms*;
- Other manufactures' configuration tools based on DDL/EDDL.

For management and diagnostics, AssetView ensures continuous information monitoring.

*HPI311 is required

Wiring Connection

Functional Specifications

Inputs	See table 1, 2 and 3									
Output and	Two-wire, 4-20 mA with superimposed digital communication (HART Protocol Version 5.1/Transmitter/ Poll-Response mode/Common 4-20 mA);									
Communication Protocol	HART [®] Protocol Version 5, with the TT400 SIS commands set;									
11010001	HART [®] is a trademark of HART Communication Foundation.									
Power Supply	Bus powered: 12 - 55 Vdc.									
Display	Liquid crystal display, rotative, with 4½ numeric digits, 5 alphanumeric digits and icons of function and status; Display indication for both sensor failure and sensor saturation.									
Failure Alarm	In case of dangerous failure detection the output goes to failure state according to NAMUR NE-43 and the detected failure is indicated in the display; The Low or High failure state is configured by the user; The failure detection by hardware results in high failure state.									
Measured Type	Temperature with one sensor; Differential Temperature between two sensors; Temperature with two sensors considering the highest; Temperature with two sensors considering the lowest; Average temperature with two sensors; Backup temperature with two sensors; Temperature generated by Callendar Van Dusen equation.									
Configuration	Remote configuration with the external programmer via HART protocol, using the resources of the DDL/EDDL;									

Performance Specifications

Accuracy	See tables 1, 2 and 3.
	For a 10 °C variation: mV (- 6 to 22 mV), TC (NBS: B, R, S,T): ± 0.03% of the input milivoltage or 0.002 mV whichever is greater;
	mV (- 10 to 100 mV), TC (NBS: E, J, K, N; DIN: L, U): ± 0.03% of the input milivoltage or 0.01 mV whichever is greater;
Ambient	mV (-50 to 500 mV): ± 0.03% of the input milivoltage or 0.05 mV whichever is greater;
Temperature Effect	Ohms (0 to 100), RTD (GE: Cu10): \pm 0.03% of the input resistance or 0.01 Ω whichever is greater;
	Ohms (0 to 400), RTD (DIN: Ni120; IEC: Pt50, Pt100; JIS: Pt50, Pt100): \pm 0.03% of the input resistance or 0.04 Ω whichever is greater;
	Ohms (0 to 2000), RTD (IEC: Pt500) , RTD (IEC: Pt1000) : $\pm 0.03\%$ of the input resistance or 0.2Ω whichever is greater; TC: cold-junction compensation rejection 60:1 (Reference: 25.0 ± 0.3 °C) .
Power Supply Effect	± 0.005% of calibrated span per volt.
Update Time	230 ms.

Output Current	Output current resolution: 15 bits; Output current accuracy: ±0.01% of the span.
Sensor Reading	A/D converter accuracy: ±0.02% of full span.
Stabilization Time after the Power up - hot start up	Less than 17 seconds.

Physical Specifications

Electrical Connections	1/2 - 14 NPT, PG 13.5 DIN, and M20 X 1.5 conduit; Electrical inlet finished in plan face to allow connection sealing by compressing the O'Ring.
Terminal Block	Two terminals for power supply connection under terminal blocks; Four terminals for sensor connection under terminal blocks.
Mounting Bracket	In carbon steel SAE 1020 with electrostatic polyester painting or 316 SST; Accessories (bolts, nuts, washers and U-clamps) in carbon steel or 316 SST.
Weight	Up to 0.93 Kg (2.067 lb) without any optional part.
Identification Plate	316 SST plate.

Transmitter Specifications

Sensor input Treatment	AD with 50 and 60 Hz input noise rejection; Input Sensor trim; Environment Temperature trim.
Primary variable Treatment	Damping of 0 to 128 seconds; Engineering unit conversion; Cold junction compensation; Input Sensor characterization (Callendar Van Dusen); Measured Type (single, differential, maximum, minimum, average).
Output Treatment	Analog current trim in two points.

Protected Operation Specifications

Operation Counter	Counting of the configuration change operations;
Configuration Protection	Configurations blocked by password; Write Protection via hardware in Non-Safety Mode.
Certification (Pending)	Intrinsic safety, explosion proof, weather proof.

Human Machine Interface Specifications

	Item	lcon	Definition
In dia stien of the	1	MD	Multidrop Mode
Indication of the State in the Display	2	FIX	Fixed Output Current
State III the Display	3	PV	Primary Variable Indication
	4	$\hat{\mathbf{v}}$	SIS Mode

						2,	3 or	4 wires		
SENSOR	TYI	PE	RA	NGE	°C	RA	NGE	°F	MINIMUM SPAN °C	°C DIGITAL ACCURACY*
	Cu10	GE	-20	to	250	-4	to	482	150	± 1.0
	Ni120	DIN	-50	to	270	-58	to	518	20	± 0.1
	Pt50	IEC	-200	to	850	-328	to	1562	40	± 0.2
RTD	Pt100	IEC	-200	to	850	-328	to	1562	40	± 0.2
RID	Pt500	IEC	-200	to	450	-328	to	842	40	± 0.2
	Pt1000	IEC	-200	to	300	-328	to	572	40	± 0.2
	Pt50	JIS	-200	to	600	-328	to	1112	40	± 0.25
	Pt100	JIS	-200	to	600	-328	to	1112	40	± 0.25
	В	NBS	100	to	1800	212	to	3272	50	± 0.5*
	E	NBS	-100	to	1000	-148	to	1832	20	± 0.2
	J	NBS	-150	to	750	-238	to	1382	30	± 0.3
	K	NBS	-200	to	1350	-328	to	2462	60	± 0.6
THERMOCOUPLE	N	NBS	-100	to	1300	-148	to	2372	50	± 0.5
	R	NBS	0	to	1750	32	to	3182	40	± 0.4
	S	NBS	0	to	1750	32	to	3182	40	± 0.4
	Т	NBS	-200	to	400	-328	to	752	15	± 0.15
	U	DIN	-200	to	600	-328	to	1112	50	± 0.5

Table 1 – Temperature Sensor Characteristics

*Not applicable for the first 20% of the range (up to 440 $^\circ\text{C}$).

SENSOR	RANGE mV	MINIMUM SPAN mV	DIGITAL ACCURACY %	SENSOR	RANGE Ohm	MINIMUM SPAN Ohm	DIGITAL ACCURACY %
	-6 to 22	0.40	$\pm~0.02\%$ or $\pm~2~\mu V$		0 to 100	3	± 0.02% or ± 0.01 Ohm
mV	-10 to 100	2	$\pm0.02\%$ or $\pm10\;\mu V$	Ohm	0 to 400	12	± 0.02% or ± 0.04 Ohm
	-50 to 500	10	10 ± 0.02% or ± 50 μV		0 to 2000	60	± 0.02% or ± 0.20 Ohm

Table 2 - mV Sensor Characteristics

Table 3 - Ohm Sensor Characteristics

COD.	Com	muni	cation	Proto	col																				
н	HAR	T and	4 to 20	0 mA																					
	COD.	Sec	urity C	Option																					
	1	SIS	- Safe	ty Instr	rumente	ed	Syste	ems																	
i i		сор	_		icator (
		0			dicator																				
	- i - i	1			al Indica		r																		
			COD.	Elec	ctrical	Co	onnec	tion	5																
Ì			0 1 2	3/4	– 14 N – 14 N – 14 Bl	IPT	(with														B P		.5 (5) DIN (6) pecification		
		÷	3	1/2	– 14 Bl	PS	(with	n 316	SST	adap	ter fo	or 1/2	- 14	NPT)	(2)										
	i.			COD	. Blar	nke	et Plu	ıg																	
				1	316										С	Cart	oon S	teel (3) (7)						
- i					COD.			-																	
		÷			0 1				racket eel Bi		•t					2 7		16 SST			at with 3	16 551	Fasteners		
			i.		Ĩ.	-	OD.		using							,	0		51001	Diack					
							A		miniu)				J	31	6 SST	- sali	ne atm	ospher	es (IPW	//TYPEX) (4)	н	Aluminium Copper Fi
i i					- i		ï	316	SST	- ĈF	8M (ÁSTI	4 - A3	51)		B							W/TYPEX) (4)		(IPW/TYPEX)
		i.						сор	. Pa	intin	g														
								0					6.5 Pol	yester	r (De	efault)									
	i.		1					8 9	Sa	afety	t Pair Blue	Epo	ý - Ele	ectros	atic	Painting	q								
				- i	i.		i l	C Z	Sa	afety	Blue I Pair	Poly	ester -	Electi	rosta	tic Pain	iting								
								1	COL	_		Ŭ	on Ty	no (10	0										
									N				ertifica		'		F	Neni		dive	Intrinoio	Cofety			
			j.					i	I D	1	ntrins	sic S		uon			г К Ј	Intrin	sic Sa	afety +	Intrinsic Explosi Intrinsic	on Proc	of + Non-incendive		
							1			C	OD.	Org	an Ce	rtifier	(10))									
											0 3		nout O A (pen		Certi	fied	5 8		EPEL RA (p	ending	1)				
		÷									(COD	Tag	Plate	e (11))									
												0	Wit	h TAG	, wh	en spec	cified			1	Blank	et	2	User'	s specification
	- İ		- i					- i	i		i i	1	COD	. Se	nsor	r Type									
į		Ì					ļ						1 2 3	RT	D Ni	u10 – G i120 – E 50 – IE	DIN					F G K	Thermocouple typ Thermocouple typ Thermocouple typ	e T - N	BS
							1						4 5			100 – II 500 – II						P M	Thermocouple typ 22 mV	e U - D	N
													6 7			1000 – 50 – JIS						N O	100 mV 500 mV		
			i.					÷.			i i	1	8	RT	D Pt	100 – J	IS					R	100 Ohm		
i i				i.	i.		i -				1	1	9 A	Th	ermo	couple	type	E - NB	3S			S U	400 Ohm 2K Ohm		
													B C	Th	ermo	couple	type	J - NB	S			z	Other		
													D	Th	ermo	couple	type	N - NE	3S						
												÷.	E	-		ocouple									
i i	- í	i.		i.	i		i -		Ì		1	1		COE). 5	Sensor	Conn	ection	n						
							1				1			2 3		2-wire 3-wire									
														4	4	1-wire									
														F	2	2-wire (t	wo se	ensors) (9)						
i i	i	i.		i	i i		i -	÷.	i		ì	÷	- i												
- н	1	1			1				N	L	0		- 4	3			-	T) (D)	0.400	DEL NU					

NOTES

(1) Values limited to 4 $^{1\!\!/_2}$ digits; units limited to 5 characters.

 $\ensuremath{\textbf{(2)}}$ Explosion proof approvals do not apply to these adapters, only to transmitters.

(3) Only available for electrical connections 1/2".

(4) IP66/68W tested for 200h to according with standard NBR 8094 / ASTM B 117.

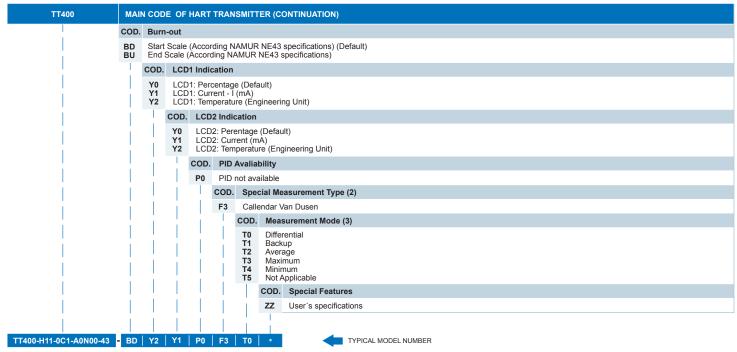
(5) Certificate for use in Explosion Proof (CEPEL and FM) (Pending).

(6) Certificate for use in Explosion Proof (CEPEL) (Pending).

(7) Not applicable for saline atmosphere.

(8) Not available for aluminum housing.

(9) For the choice of the sensor, consult HART table, Measurement Mode item in the page 6.


(10) For hazardous locations.

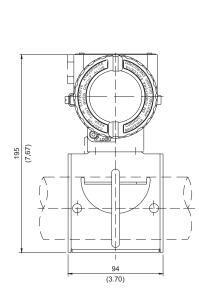
(11) Rectangular plate in 316 SST.

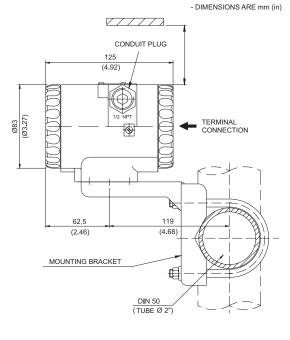
smar

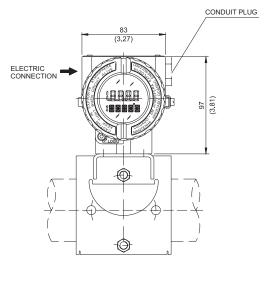
****HART OPTIONAL CONFIGURATION (1)**

*Leave blank for no optional items.

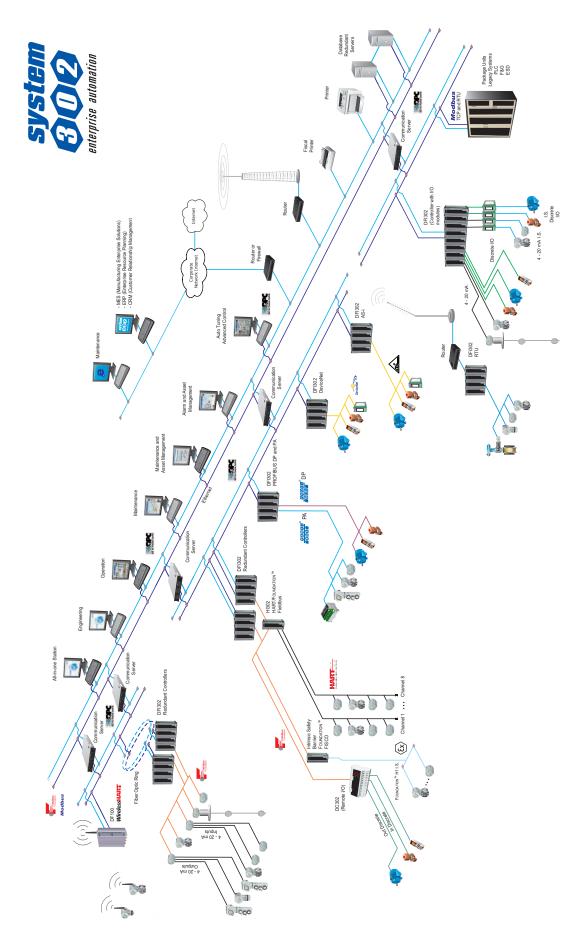
NOTES


(1) Fill out with optional codes only if different from default.


(2) Callendar Van Dusen defines user-specific linearization of resistance temperature sensor.


(3) When working with two sensors connected to the terminal block.

Dimensions


NOTES

smar

smar

Main Smar Products

Syscon System Configurator

11

Equipment Database

Plant Information Management

LogicView IEC61131 Programming Tool

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

© Copyright 2009 - Smar International - all rights reserved. - September/2014